Сделай сам: синтетические мышцы из лески и нитки. Искусственные мышцы - Artificial muscle Искусственные мышцы своими руками

Изобретение относится к области бионического протезирования, а именно к искусственным мышцам, представляющим собой композиционные материалы, подверженные воздействию слабых электрических импульсов. Искусственная мышца содержит нейлоновое и/или полиэтиленовое волокно, при этом она представляет собой среду из, по меньшей мере, одного полиорганосилоксана, по меньшей мере, одной эпоксидной смолы и, по меньшей мере, одного катализатора полимеризации эпоксидной смолы. Мышца прошита одной или более нитями, по крайней мере, одного интерметаллида с памятью формы и нейлоновым и/или полиэтиленовым волокном. Технический результат заключается в обеспечении малого времени отклика и возможности быстрого сокращения под действием электрических импульсов, в частности с плотностью тока до 20 мА/см 2 , в исключении возможности бесконтрольного сокращения под действием температуры окружающей среды и в придании искусственной мышце свойства самовосстановления. 10 з.п. ф-лы, 2 табл.

Искусственная мышца

Изобретение относится к области бионического протезирования, а именно к искусственным мышцам, представляющим собой композиционные материалы, способные сокращаться под воздействием слабых электрических импульсов. Искусственная мышца может быть использована в медицине как составная часть бионических конечностей или же как самостоятельный имплантат, а также в робототехнике при производстве высокоточных манипуляторов.

Широко известна проблема создания материалов, по химическому сродству и механическим свойствам близких к живому мышечному волокну, посредством которого происходит движение в теле человека или животного. На данный момент разработано несколько видов искусственных мышц, однако на пути использования каждого из них возникает ряд проблем, касающихся стоимости материалов и ограниченности использования.

Известна гидравлическая искусственная мышца, включающая первый соединитель с закрытым концом, эластичную резиновую трубку, сплетенные нити высокопрочного волокна, обвитые вокруг упомянутой трубки, второй соединитель с закрытым концом, через который в трубку поступает вода, два кольцеобразных зажима, расположенных по краям мышцы, два кольцеобразных зажима, расположенных в средней части мышцы, и два крепежных элемента в форме конуса, обращенного внутрь мышцы (CN 103395072 A, A61F 2/50, 20.11.2013). Описанная мышца имеет очень ограниченную применимость: ее использование возможно только в робототехнике, основанной на гидравлических системах.

Известна искусственная мышечная ткань, представляющая собой углеродные нанотрубки, пропитанные воском и скрученные по спирали (журнал Sciense, том 338, страницы 928-932, 16.11.2012).

Описанная искусственная мышечная ткань способна поднять вес, превосходящий ее собственный в сто тысяч раз, однако она имеет очень высокую стоимость и при этом отличается повышенной чувствительностью к факторам окружающей среды: перепады температуры или микротоки способны привести к ее непроизвольному сокращению.

Наиболее близким аналогом заявленной искусственной мышцы является нейлоновое или полиэтиленовое волокно, скрученное по спирали (http://nauka21vek.ru/archives/56843, 26.02.2014).

Преимущества данного волокна заключаются в его способности быстро сокращаться при нагревах, а также его низкой стоимости, однако вместе с этим оно имеет ряд недостатков. Наравне с его восприимчивостью к нагревам оно не способно полноценно сокращаться под воздействием слабых электрических импульсов, таких как нервные. В связи с этим для создания протезов конечностей возникает необходимость применять усилители и преобразователи электрического сигнала в тепловой, что, в свою очередь, требует использования источников питания (батареек, аккумуляторов). Повышенная чувствительность волокна к температуре окружающей среды может привести к непроизвольному сокращению мышц и, соответственно, движению искусственной конечности. В связи с этим возникает необходимость использовать теплоизоляторы. Вышеперечисленные условия усложняют конструкцию и себестоимость протеза, а также создают неудобства в использовании.

Задачей предложенного изобретения является создание безвредной и недорогой искусственной мышцы, способной воспринимать нервные импульсы или импульсы, аналогичные им.

Техническим результатом предложенного изобретения является обеспечение малого времени отклика и возможности быстрого сокращения под действием электрических импульсов, в частности, с плотностью тока до 20 мА/см 2 , исключение возможности бесконтрольного сокращения под действием температуры окружающей среды и придание искусственной мышце свойства самовосстановления.

Технический результат достигается за счет того, что предложена искусственная мышца, содержащая нейлоновое и/или полиэтиленовое волокно, при этом она представляет собой среду из по меньшей мере одного полиорганосилоксана, по меньшей мере одной эпоксидной смолы и по меньшей мере одного катализатора полимеризации эпоксидной смолы, причем мышца прошита одной или более нитями по крайней мере одного интерметаллида с памятью формы и нейлоновым и/или полиэтиленовым волокном.

Интерметаллид с памятью формы может быть выбран из группы: Ti-Ni, Zr-Ni, Fe-Mn-Si и сплав Гейслера. Эффект памяти формы у перечисленных интерметаллидов является наиболее выраженным. Кроме того, Fe-Mn-Si является наиболее дешевым, Ti-Ni - наиболее распространенным и изученным, Zr-Ni имеет высокую ответную реакцию на электрические импульсы.

Для дополнительного упрочнения, придания мышце сглаженных и более прямолинейных движений она может быть дополнительно прошита нитями эластомера.

Для увеличения амплитуды сокращения искусственной мышцы под действием электрического импульса желательно, чтобы нейлоновое и/или полиэтиленовое волокно было скручено по спирали.

Для увеличения реакции мышцы на импульс тока и придания точности движения желательно, чтобы одна или более нитей по крайней мере одного интерметаллида с памятью формы были скручены по спирали.

Для дополнительного увеличения скорости сокращения искусственной мышцы, более плавного начала и конца ее сокращения под действием электрического импульса, а также для снижения внутреннего трения желательно, чтобы одна или более нитей по крайней мере одного интерметаллида с памятью формы были скручены с нейлоновым и/или полиэтиленовым волокном по спирали вокруг друг друга.

Для повышения сцепления одна или более нитей по крайней мере одного интерметаллида с памятью формы и нейлоновое и/или полиэтиленовое волокно могут быть соединены со средой из по меньшей мере одного полиорганосилоксана посредством склеивания или высокотемпературного нагрева с последующим охлаждением.

В качестве катализатора полимеризации эпоксидной смолы можно использовать катализатор Граббса, который является наиболее доступным и распространенным.

Для дополнительного упрочнения, увеличения скорости сокращения под действием тока и улучшения восприимчивости к слабым токовым импульсам искусственная мышца может быть дополнительно прошита волокном углеродных нанотрубок.

В случае соприкосновения нескольких искусственных мышц для уменьшения трения между ними желательно, чтобы на поверхность искусственной мышцы был нанесен слой из полиметилсилоксана.

Для того чтобы сократить стоимость искусственной мышцы при сохранении высокой прочности и скорости реагирования на электрические импульсы, она может иметь следующее содержание компонентов, мас. %:

Полиорганосиликаны имеют ряд преимуществ по сравнению с другими имитаторами живых тканей. Изделия из них являются наиболее безвредными и долговечными, имеют очень низкую температуру стеклования (около -130°C), способны копировать и сохранять заданный им внешний вид, а также по консистенции они близки к биологическим тканям, например натуральным мышцам.

Известен ряд материалов с памятью формы, для которых также возможен эффект самовосстановления. Одним из наиболее распространенных примеров такого материала служит интерметаллид Ni-Ti (нитинол), в котором на один атом титана приходится один атом никеля. Если выполненное из него изделие деформировать, то при нагревании оно снова примет прежнюю форму. Наравне с нагревом в виду наличия некоторого сопротивления вернуть форму изделию можно также посредством пропускания через него тока. В случае если изделие представляет собой тонкую нить, это можно сделать даже небольшим током, например до 20 мА/см 2 , который течет по нервным волокнам.

Запоминание своего положения при тех или иных условиях, а также возможность самовосстановления обусловлены эффектом дисклинации, при котором происходит миграция зерен на границах дефектных зон, то есть металлические дефекты обретают поля напряжений с настолько интенсивными зарядами, что края трещин сближаются и поврежденный интерметаллид регенерируется.

Было установлено, что подобным свойством могут обладать некоторые другие интерметаллиды на основе никеля, в которых второй компонент в чистом виде имеет гексагональную плотно упакованную или кубическую объемно-центрированную решетку. К таким интерметаллидам относятся Ni-Zr и Ni-V. Использование последнего в медицинских целях исключается ввиду повышенной токсичности ванадия и его соединений, однако его применение возможно в робототехнике при создании манипуляторов.

Исследование интерметаллида Ni-Zr, в котором на один атом никеля приходится один атом циркония, показало, что он способен немного быстрее реагировать на электрические импульсы, нежели нитинол (Ti-Ni), что скорее всего связано с теплопроводностью второго компонента: теплопроводность циркония при 300 K составляет 22,7 Вт/(м·К), а титана - 21,9 Вт/(м·К).

Известно проявление памяти формы под воздействием магнитного поля у интерметаллидного соединения, называемого сплавом Гейслера и имеющего следующую формулу: X 2 YZ, где X, Y, Z - разные металлы. Наиболее распространенным видом данного сплава является Ni 2 MnGa. Память формы вызывается мартенситным фазовым переходом и может также обеспечиваться электрическими импульсами, меняющими магнитное поле сплава Гейслера.

Помимо вышеперечисленных, известен также интерметаллид с памятью формы - Fe-Mn-Si, который отличается низкой стоимостью.

Также известны другие материалы с памятью формы, например такие, как интерметаллиды: Au-Cd, Cu-Zn-Al, Cu-Al-Ni, Fe-Mn-Si, Fe-Ni, Cu-Al, Cu-Mn, Co-Ni и Ni-Al. Однако в виду их слабовыраженных свойств памяти формы и самовосстановления их сложнее использовать на практике.

Таким образом, для управления бионической мышцей электрическими импульсами ее необходимо прошить нитями по крайней мере одного интерметаллида с памятью формы, при этом толщину нитей следует подбирать исходя из величины поступающих сигналов. Очевидно, что для восприятия малых нервных импульсов толщина нитей должна быть небольшой - порядка 0,02-0,5 мм. Для восприятия сильных импульсов толщина может составлять несколько миллиметров и более того.

Вместе с тем использование подобного интерметаллида без среды, которая играет роль теплоизолятора и электроизолятора (в данном случае полиорганосилоксан), приводит к чувствительности интерметаллида к температуре окружающей среды и таким образом его движение становится неконтролируемым.

Существуют материалы, способные быстро сжиматься под тепловым воздействием. Ими являются полиэтиленовое и нейлоновое волокна, отличающиеся низкой стоимостью, высокой прочностью и износостойкостью. Однако их использование в качестве искусственных мышц без нитей интерметаллидов с памятью формы приводит к ряду проблем. Ввиду небольшой электропроводности волокон слабые токовые импульсы не способны привести такие мышцы в действие без дополнительных электронных устройств. Однако в случае синхронного воздействия импульса и на интерметаллидные нити с памятью формы, и на нейлоновое и/или полиэтиленовое волокно мышцы через некоторое количество повторяющихся импульсов становятся способны сокращаться с большой амплитудой и скоростью. Это связано с цепной реакцией: первый импульс приводит к небольшому сокращению волокна, провоцирующему небольшое сжатие интерметаллида, с которым он находится в одной системе, соединенной полиорганосилоксановой средой, второй импульс уже непосредственно сжимает интерметаллид, запомнивший свое прежнее положение при токе с определенными характеристиками (сила, частота), в связи с чем волокно сокращается с большей амплитудой. С третьим и последующими импульсами искусственная мышца начинает работать с высокой скоростью и амплитудой движения. Таким образом, искусственная мышца может полноценно работать только при подаче электрического импульса и на волокно, и на интерметаллидные нити одновременно.

Прошивание искусственной мышцы нитями эластомера дополнительно упрочнит ее и позволит совершать более сглаженные и плавные движения при сохранении прочих параметров. В качестве эластомера допустимо применять различные каучуки и резины, желательно, с высокой эластичностью и сопротивлением раздиру.

Наличие в составе искусственной мышцы эпоксидной смолы наравне с катализатором ее полимеризации, например наиболее доступного катализатора Граббса, позволит мышце за короткий период времени восстановиться в случае повреждений, например механических, химических или тепловых.

При нагревании в развернутом виде нейлоновое волокно способно сокращаться лишь на 4/100, полиэтиленовое - на 3/1000. Однако в случае скручивания данных волокон по спирали нейлоновое приобретает способность сжиматься на 34/100, а полиэтиленовое - на 16/100. Этот эффект объясняется простым физическим явлением: в выпрямленном виде нить сокращается за счет увеличения ее толщины, во втором случае она сокращается и за счет увеличения ее толщины, и за счет сокращения спирали. Указанные выше значения близки к способности сокращения натуральных мышечных волокон и могут позволить их аналогу поднимать груз большой массы.

В том случае если нити интерметаллидов с памятью формы скручены по спирали, реакция искусственной мышцы на один и тот же импульс тока становится лучше: по скорости, степени сокращения и прямолинейности движений, то есть отсутствуют колебания, перпендикулярные оси прохождения спиралей интерметаллидных нитей. Скорость и степень сокращения интерметаллидов объясняются аналогичным эффектом, как в случае нейлоновых и полиэтиленовых волокон. Отсутствие перпендикулярных колебаний объясняется следующим. Движение интерметаллида в виде выпрямленной нити сложнее предсказать ввиду того, что оно определяется памятью кристаллической структуры металла лишь на сечении тонкой нити. В случае если температура в силу каких-то факторов на одном участке нити станет сильно отличаться от температуры на других участках, это может привести к некорректному движению искусственной мышцы. Вместе с тем движение интерметаллида в виде нити, скрученной по спирали, станет определяться памятью кристаллической структуры металла на всем сечении витка спирали, что способствует стабилизации и прямолинейности движений.

Если нити интерметаллидов с памятью формы будут скручены вместе с волокном по спирали вокруг друг друга, это приведет к ряду положительных эффектов, а именно: к более плавному началу и концу сокращения искусственной мышцы под действием электрического импульса, к дополнительному увеличению скорости сокращения и к снижению внутреннего трения. Поскольку чувствительные к токовому импульсу материалы реагируют на ток с различной скоростью (например, интерметаллид ввиду своей высокой электропроводности откликается на токовый импульс быстрее), их переплетение приведет к их синхронному движению, что сократит трение внутри материала и, соответственно, уменьшит его износ.

Помимо этого, стоит отметить, что вшивание нитей интерметаллида и волокна в скрученном состоянии увеличивает их сцепление с основой и таким образом во время сокращения в мышце не происходит внутреннего трения и она работает с максимальной эффективностью.

Для дополнительного улучшения сцепления, что в большей степени требуется, если нить находится в выпрямленном состоянии, ее можно соединять с полиорганосилоксановой основой, например, посредством склеивания или высокотемпературного нагрева с последующим охлаждением. В случае последнего полиорганосилоксан вначале размягчается, а при дальнейшем охлаждении срастается с нитью.

Склеивание лучше проводить клеем на основе эпоксидной смолы, которая в случае разрыва быстро полимеризуется под действием катализатора.

Искусственная мышца может быть дополнительного прошита волокном углеродных нанотрубок, которое также сокращается под действием электрических импульсов и при этом обладает высокими прочностными свойствами, реагирует на импульсы с высокой скоростью и имеет хорошую восприимчивость к слабому току. Таким образом, его наличие может несколько улучшить прочность и амплитуду сокращения мышцы, однако стоимость последней в таком случае увеличится.

Также учитывая хоть и менее, но все равно довольно высокую стоимость интерметаллидов, в особенности Ni-Ti, для удешевления искусственной мышцы при незначительной потере прочности и скорости реагирования на электрические импульсы лучше использовать мышцу следующего состава, мас. %:

Предложенная искусственная мышца может использоваться как составная часть бионических конечностей, так и служить в качестве самостоятельного имплантата, заменяющего живую мышцу. В последнем случае концы искусственных мышц можно соединять с костью посредством медицинских клеев, таких как цианоакрилатный клей, остеопласт и прочие.

В тех случаях, когда необходимо заменить лишь отдельный участок живой мышцы, ее искусственный аналог можно также склеивать с поврежденной живой мышцей, однако в такой ситуации велика вероятность ее неприживления. Такие факторы, как сокращение, тканевое дыхание мышечных волокон, постоянный обмен веществ и прочие химические процессы могут послужить причиной отторжения имплантата. В виду изложенного во время имплантации предложенную искусственную мышцу рекомендуется склеивать с костной, нежели с мышечной тканью. Таким образом, поврежденную живую мышцу можно полностью заменить искусственной, однако восстановить отдельный ее участок с помощью искусственного аналога на данном этапе весьма проблематично.

Было изготовлено 5 образцов цилиндрической формы размером 40×7 мм. Вначале произвели смешивание полиорганосилоксана, эпоксидной смолы и катализатора ее полимеризации, причем смешивание проводили в две стадии. На первой стадии при температуре его плавления в полиорганосилоксан, аккуратно помешивая его по часовой стрелке, добавили небольшое количество отвердителя полиорганосилоксана - перекись бензоила. Вслед за этим после небольшого загущения в него ввели эпоксидную смолу. Когда по мере остывания и действия отвердителя смесь стала еще более густой, продолжая ее аккуратно помешивать по часовой стрелке, на второй стадии в нее ввели катализатор полимеризации эпоксидной смолы.

Равномерное помешивание в одном направлении постепенно загущающегося полиорганосилоксана и поочередное введение эпоксидной смолы (при менее густой консистенции среды) и катализатора ее полимеризации (при более густой консистенции среды) привели к тому, что данные компоненты постепенно застыли в массе полиорганосилоксана, имея фазовое разделение между собой и в большей степени не прореагировав. При этом, поскольку смола была введена при менее густой консистенции среды, ее распространение в искусственной мышце является более обширным в отличие от катализатора полимеризации.

Практически застывшую полученную смесь загрузили в цилиндрическую форму, остудили до температуры 65°C, прошили ее насквозь вдоль оси цилиндра нитями интерметаллида, нитями эластомера, волокном из углеродных нанотрубок, нейлоновым и полиэтиленовым волокном, после чего полученную заготовку остудили до комнатной температуры, в процессе чего произошло ее доотверждение и прочная фиксация нитей в среде, и извлекли из формы. Прошивку производили либо прямой иглой, либо иглой, выполненной по спирали. Состав и характеристика образцов представлены в таблице 1.

Образцы прошили насквозь 2-мя проводками токопроводящего полимера - политиофена таким образом, что проводки имели площадь соприкосновения с каждой нитью интерметаллида, нейлоновым и/или полиэтиленовым волокном и волокном из углеродных нанотрубок.

Верхнюю часть образца со вставленными в него проводками закрепили в сдавливающем металлическом кольце, а провода из токопроводящего полимера подключили к источнику питания.

Через нижнюю часть образца продели капроновую нитку с подвешенной гирькой весом 250 г.

Далее на образец начали подавать ток по следующему режиму: 1,5 секунды - подача тока, 1 секунда - пауза, при этом после третьего импульса замерялись время задержки сигнала (время отклика), скорость и степень сокращения искусственной мышцы. Первые два импульса не брались в расчет, поскольку интерметаллиды еще не "запомнили" движение-сокращение.

Сделав несколько замеров, образцы обдували теплым воздухом (около 50°C) в течение 10 секунд и в это время также измеряли скорость и степень сокращения искусственной мышцы.

Также измеряли эти параметры и при одновременной подаче тока и температурном нагреве.

После этого образцам нанесли повреждения: в средней его части сделали прорезь, повредив нити и волокна. Затем 1-ый и 3-ий образцы оставили в покое, а на 2-ой, 4-ый и 5-ый начали подавать ток в третий раз по тому же режиму.

Характеристика подаваемого тока, свойства и реакции искусственной мышцы на импульсы тока, температуру окружающей среды и повреждения приведены в таблице 2.

Согласно полученным данным предложенная бионическая мышца обладает незначительным временем отклика, она способна сокращаться под действием слабых электрических импульсов, причем степень бесконтрольного сокращения под действием температуры окружающей среды настолько мала, что ею можно пренебречь.

Также предложенная мышца обладает свойством самовосстановления в короткий промежуток времени, причем при подаче токового сигнала скорость и степень восстановления увеличиваются. На скорость ответной реакции мышцы на токовые импульсы влияют такие параметры, как частота тока, а также геометрия расположения интерметаллидных нитей и волокна, если их скрутить по спирали и, даже более того, если их скрутить по спирали вокруг друг друга, то скорость реакции мышцы увеличится.

При наличии нитей эластомера все вышеописанные характеристики мышцы остаются примерно такими же, однако ее движения становятся более сглаженными.

Волокно из углеродных нанотрубок имеет незначительное влияние на скорость отклика, прочность и степень сокращения. Следовательно, его наличие не является обязательным и его можно вводить в мышцу, ориентируясь на стоимость.

С учетом того что предложенная искусственная мышца способна обеспечить достижение заявленного технического результата, можно судить о том, что вопросы со стороны миологии, касающиеся имплантации, были решены. В то же время остается вопрос со стороны неврологии, а именно касающийся подвода к мышцам токового сигнала от нерва (в том числе посредством искусственного нерва).

Поскольку почти все химические вещества, входящие в состав предложенной искусственной мышцы, являются недорогими, а самый ценный компонент - нитинол не требует большого расходования, заявленное изобретение из-за относительно невысокой стоимости также может широко применяться в робототехнике и машиностроении, например, при производстве высокоточных манипуляторов.

1. Искусственная мышца, содержащая нейлоновое и/или полиэтиленовое волокно, отличающаяся тем, что она представляет собой среду из по меньшей мере одного полиорганосилоксана, по меньшей мере одной эпоксидной смолы и по меньшей мере одного катализатора полимеризации эпоксидной смолы, причем мышца прошита одной или более нитями по крайней мере одного интерметаллида с памятью формы и нейлоновым и/или полиэтиленовым волокном.

2. Искусственная мышца по п. 1, отличающаяся тем, что интерметаллид с памятью формы выбран из группы: Ti-Ni, Zr-Ni, Fe-Mn-Si и сплав Гейслера.

3. Искусственная мышца по п. 1, отличающаяся тем, что она дополнительно прошита нитями эластомера.

4. Искусственная мышца по п. 1, отличающаяся тем, что нейлоновое и/или полиэтиленовое волокно скручено по спирали.

5. Искусственная мышца по п. 1, отличающаяся тем, что одна или более нитей по крайней мере одного интерметаллида с памятью формы скручены по спирали.

6. Искусственная мышца по п. 1, отличающаяся тем, что одна или более нитей по крайней мере одного интерметаллида с памятью формы скручены с нейлоновым и/или полиэтиленовым волокном по спирали вокруг друг друга.

7. Искусственная мышца по п. 1, отличающаяся тем, что одна или более нитей по крайней мере одного интерметаллида с памятью формы и нейлоновое и/или полиэтиленовое волокно соединены со средой из по меньшей мере одного полиорганосилоксана посредством склеивания или высокотемпературного нагрева с последующим охлаждением.

8. Искусственная мышца по п. 1, отличающаяся тем, что в качестве катализатора полимеризации эпоксидной смолы используют катализатор Граббса.

9. Искусственная мышца по п. 1, отличающаяся тем, что она дополнительно прошита волокном углеродных нанотрубок.

10. Искусственная мышца по п. 1, отличающаяся тем, что на ее поверхность нанесен слой из полиметилсилоксана.

11. Искусственная мышца по п. 3, отличающаяся тем, что она имеет следующее содержание компонентов, мас. %:

Похожие патенты:

Изобретение относится к электронной технике СВЧ. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре упомянутая полупроводниковая гетероструктура выполнена в виде последовательности следующих основных слоев, по меньшей мере, одного буферного слоя GaAs толщиной не менее 200 нм, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs толщиной 12-18 нм и, по меньшей мере, двух δn-слоев, легированных донорной примесью, и двух спейсерных i-слоев AlxGa1-xAs толщиной каждый 1-3 нм, попарно расположенных по обе стороны собственно канального слоя, двух групп барьерных слоев AlxGa1-xAs, каждая в виде i-p-i системы барьерных слоев, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом барьерные слои в каждой i-p-i системе имеют толщину (100-200, 4-15, 2-10) нм в подложечной, (2-10, 4-10, 4-15) нм в затворной соответственно, уровень легирования акцепторной примесью (4-20)×1018 см-2 соответственно, барьерного слоя i-GaAs толщиной 5-30 нм, слоя омического контакта n+-GaAs толщиной (10-60) нм электродов истока и стока, при этом электрод затвора выполнен длиной не более 0,5 мкм.

Изобретение относится к электронной технике. Полупроводниковая гетероструктура для мощного полевого транзистора СВЧ содержит на монокристаллической полуизолирующей подложке арсенида галлия последовательность полупроводниковых слоев каждый с заданными функциональными свойствами и техническими характеристиками - толщиной слоев, составом - качественным и количественным, концентрацией легирующей примеси.

Изобретение относится к экспериментальной медицине и может быть использовано при ранней диагностике и лечении опухолей, индуцированных в эксперименте. Для раннего МРТ выявления опухолей, инвазий и метастазов животному вводят комбинации МРТ-негативных контрастных нанопрепаратов с позитивными МРТ контрастными препаратами.

Изобретение относится к электронной технике СВЧ. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре упомянутая гетероструктура выполнена в виде последовательности следующих основных слоев: по меньшей мере одного буферного слоя GaAs толщиной не менее 200 нм, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs толщиной 12-20 нм и по меньшей мере двух δn-слоев, легированных донорной примесью, и двух спейсерных i-слоев AlxGa1-xAs, толщиной каждый 1-3 нм, двух групп барьерных слоев AlxGa1-xAs, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом подложечная группа барьерных слоев выполнена в виде акцепторно-донорной p-i-δn системы барьерных слоев, затворная группа барьерных слоев - в виде донорно-акцепторной δn-i-p системы барьерных слоев, при этом в каждой группе барьерных слоев i-слой выполнен толщиной 0,5-10 нм, p-слой выполнен с уровнем легирования, обеспечивающим высоту потенциальных барьеров 0,4-0,8 ширины запрещенной зоны AlxGa1-xAs, δn-слой выполнен с избыточным уровнем легирования, обеспечивающим разницу поверхностной плотности донорной и акцепторной примеси равной (1-10)×1012 см-2.

Разработана технология создания недорогих искусственных мышц на основе жесткого каркаса, заключенного в мягкую камеру. Мышцы сокращаются за счет уменьшения в них давления, причем их можно создавать, используя разные материалы. Статья опубликована в журнале Proceedings of the National Academy of Sciences .

Инженеры, разрабатывающие роботов, нередко используют в своих изобретениях конструкции, напоминающие по функциям живых существ. Несмотря на это, для движения роботы все равно чаще всего используют электромоторы или двигатели внутреннего сгорания, соединенные со сложными механическими передачами. Некоторые исследователи придерживаются другого подхода и разрабатывают источники движения, более близкие по своему устройству к мышцам. Уже существует немало прототипов искусственных мышц, которые могут сокращаться подобно настоящим мышцам, но почти все они требуют дорогих материалов и технологических процессов, при этом эффективность многих из них все еще низка.

Исследователи под руководством Роберта Вуда (Robert Wood) из Гарвардского университета разработали простую и недорогую технологию создания эффективных искусственных мышц, которые можно создавать из большого количества разных материалов. Принципиальная схема создания таких актуаторов довольно проста. В качестве основы используется каркас заданной формы, который может складываться и раскладываться. Затем вокруг этого каркаса склеиваются или сплавляются два фрагмента пленки из полимера или другого воздухонепроницаемого и мягкого материала. Таким образом формируется мягкая камера с жестким каркасом внутри, которая подключается к источнику разницы давления.


Принцип действия искусственных мышц

Shuguang Li et al. / PNAS, 2017

Управление актуатором происходит за счет уменьшения или увеличения давления жидкости или газа внутри камеры. В результате актуатор начинает менять форму: складываться или наоборот увеличиваться в размерах, а в случае с каркасом сложной формы, совершать другие движения - например, изгибаться в определенную сторону.


Пример захватывающего устройства

Shuguang Li et al. / PNAS, 2017

С помощью такой технологии исследователи создали несколько прототипов актуаторов, и измерили их эффективность. Один из этих прототипов, представляющий собой десятисантиметровый линейный актуатор весом менее трех грамм, смог поднять груз массой более трех килограмм. Исследователи подсчитали, что пиковая мощность таких актуаторов составляет около двух киловатт на килограмм массы, что делает их мощнее настоящих скелетных мышц млекопитающих.

Ранее ученые представляли множество прототипов искусственных мышц, работающих на основе разных принципов. Некоторые также работают за счет давления, например, основную часть которой занимает полимерная пена, покрытая силиконом, а также мягкие вакуумные из множества полых ячеек. Другие используют для своей работы нагревание: таким образом работают на основе нейлоновой лески и недавно представленный , наполненный пузырьками с этанолом, который при нагревании превращается в газ и расширяется. Помимо этого недавно был представлен из множества слоев двумерного материала, который расширяется при внедрении в него сторонних ионов. Кстати, не всегда искусственные мышцы сделаны полностью из искусственных материалов. Тайваньские ученые мышцы из тонкой пленки из кожицы лука, которая сокращается под действием электричества.

Григорий Копиев

Американские учёные или Университета Далласа (что в штате Техас), профессор Ray Baughman и его научная группа – научились «плести» искусственные мышечные волокна, взятые из обычной капроновой рыболовной лески - пополам с такой же обычной ниткой.

Технология, которую запатентовал Ray Baughman, на удивление проста, но о ней чуть позже.

Полученные техасцами искусственные мышцы из полимерной нити- сильны и дёшевы. Учёные собираются использовать эти новые искусственные мышечные волокна для двух основных целей:

  • при строительстве роботов грузо-подъёмщиков,
  • и для создания экзоскелетов в самых различных сферах применения.

Искусственные мышечные волокна Ray Baughman из университета Далласа - по всем показателям - намного превосходят природные, человеческие.

Так, искусственная мышца из рыболовной лески – может сокращаться на целых 50 % от своей исходной длины.

Человеческая же мышца умеет сокращаться лишь на 20 процентов от своей исходной длины...

(Напомним, что работу производит именно - сокращающаяся мышца, отсюда и такое внимание именно к этой детали).

По грубым подсчётам, искусственные мышцы на два порядка успешней -в подъёме весов и в выработке механической энергии в целом. Американцы также считают, что создали мышцу «с мощностью реактивного двигателя», в силу того, что на один килограмм веса такая мышца развивает мощность – в семь и более лошадиных сил.

Искусственная мышца: Всё гениальное – просто

Полимерная нить, та, которая и идёт на изготовление лески для рыболовов, скручивается в спираль. Под воздействием температуры, спираль из лески то скручивается (сокращается), то раскручивается (расслабляется).

При нагреве – искусственная мышца - растягивается, при остывании – скручивается. И – наоборот.

Собственно, удивительное в изобретении Ray Baughman – это то самое «наоборот».

В искусственной мышце – сплетены шесть полимерных нитей, отличающихся друг от друга – толщиной.

Успешный эксперимент учёных показал, что углеродные нанотрубки (из которых раньше пытались делать искусственные мышцы) это тупиковый путь развития данной технологии. Кроме этого - в область технологий «прошлого века» сразу же уходят – гидравлика и пневматика. Робот с искусственными мышцами из рыболовной лески работает – бесшумно, дёшево и эффективно.

Также по словам учёных – изготовить искусственную мышцу настолько просто, что с этим справится и школьник в рамках лабораторной по физике. Нужно лишь иметь с собой – две канцелярские скрепки, дрель и … саму леску!

Добро пожаловать в век киборгов-силачей?..

Современные роботы могут многое. Но при этом им далеко до человеческой легкости и грациозности движений. И вина тому - несовершенные искусственные мышцы. Ученые многих стран стараются решить эту проблему. Статья будет посвящена краткому обзору их удивительных изобретений.

Полимерные мышцы от сингапурских ученых

Шаг к более недавно сделали изобретатели из Национального Сегодня андроиды-тяжеловесы двигаются за счет работы гидравлических систем. Существенный минус последних - небольшая скорость. Искусственные же мышцы для роботов, представленные сингапурскими учеными, позволяют киборгам не только поднимать предметы, которые в 80 раз тяжелее их собственного веса, но и делать это так же быстро, как и человек.

Инновационная разработка, растягивающаяся в длину в пять раз, помогает "обойти" роботам даже муравьев, которые, как известно, могут переносить предметы в 20 раз тяжелее веса их собственного тельца. Полимерные мышцы обладают следующими достоинствами:

  • гибкостью;
  • поражающей прочностью;
  • эластичностью;
  • способностью менять свою форму за несколько секунд;
  • возможностью преобразовывать кинетическую энергию в электрическую.

Однако на этом ученые не собираются останавливаться - в их планах создать искусственную мускулатуру, которая бы позволила роботу поднимать груз, в 500 раз тяжелее его самого!

Открытие из Гарварда - мышцы из электродов и эластомера

Изобретатели, которые трудятся в Школе прикладных и инженерных наук Гарвардского университета, представили качественно новые искусственные мышцы для так называемых "мягких" роботов. По словам ученых, их детище, состоящее из мягкого эластомера и электродов, в чьем составе углеродные нанотрубки, по своим качествам не уступает человеческой мускулатуре!

Все существующие на сегодня роботы, как уже говорилось, имеют в своей основе приводы, чей механизм - это гидравлика или пневматика. Такие системы работают за счет сжатого воздуха или реакции химических веществ. Это не позволяет сконструировать робота, такого же мягкого и быстрого, как человек. Гарвардские ученые устранили этот недостаток, создав качественно новый концепт искусственных мышц для роботов.

Новая "мускулатура" киборгов - многослойная структура, в которой электроды из нанотрубок, созданные в лаборатории Кларка, управляют верхними и нижними слоями гибких эластомеров, являющихся детищем ученых уже из Калифорнийского университета. Такие мышцы идеальны как для "мягких" андроидов, так и для лапароскопических инструментов в хирургии.

На этом замечательном изобретении гарвардские ученые не остановились. Одна из последних их разработок - это биоробот-скат. Его составляющие - клетки сердечных мышц крыс, золото и силикон.

Изобретение группы Баухмана: еще один вид искусственных мышц на основе углеродных нанотрубок

Еще в 1999 г. в австралийском городке Кирхберге на 13-й встрече Международной зимней школы по электронным свойствам инновационных материалов выступил с докладом ученый Рей Баухман, работающий в компании Allied Signal и возглавляющий международную исследовательскую группу. Его сообщение было на тему изготовления искусственных мышц.

Разработчики под началом Рэя Баухмана смогли представить в виде листов нанобумаги. Трубочки в этом изобретении были всячески переплетены и перепутаны между собой. Сама нанобумага своим видом напоминала обычную - ее возможно было держать в руках, разрезать на полосы и кусочки.

Эксперимент группы с виду был очень прост - ученые прикрепили кусочки нанобумаги к разным сторонам клейкой ленты и опустили эту конструкцию в соляной электропроводный раствор. После того как была включена слабовольтная батарея, обе нанополоски удлинились, особенно та, что была связана с отрицательным полюсом электробатареи; затем бумага изогнулась. Модель искусственной мышцы функционировала.

Сам Баухман считает, что его изобретение после качественной модернизации существенно преобразит роботехнику, ведь такие углеродные мышцы при сгибании/разгибании создают электрический потенциал - производят энергию. К тому же такая мускулатура раза в три сильнее человеческой, может функционировать при крайне высоких и низких температурах, используя для своей работы невысокую силу тока и напряжения. Вполне возможно ее применение и для протезирования человеческих мышц.

Техасский университет: искусственные мышцы из рыболовной лески и швейных ниток

Одной из самых поразительных является работа ученой группы из Техасского университета, который расположен в Далласе. Ей удалось получить модель искусственной мускулатуры, по своей силе и мощности напоминающей реактивный двигатель - 7,1 л.с./кг! Такие мышцы в сотни раз сильнее и продуктивнее человеческих. Но самое удивительное здесь то, что их сконструировали из примитивных материалов - высокопрочной лески из полимера и швейной нитки.

Питание такой мышцы - это перепад температур. Обеспечивает его швейная нить, покрытая тонким слоем металла. Однако в будущем мышцы роботов могут подпитываться от перепадов температур окружающей их среды. Это свойство, кстати, вполне можно применять для адаптирующейся к погоде одежды и других подобных устройств.

Если скручивать полимер в одну сторону, то он будет резко сжиматься при нагревании и быстро растягиваться при охлаждении, а если в другую - то в корне наоборот. Такая нехитрая конструкция может, например, вращать габаритный ротор со скоростью 10 тыс. оборотов/мин. Плюс таких искусственных мышц из лески в том, что они способны сокращаться до 50 % от своей исходной длины (человеческие только на 20 %). Кроме этого, их отличает удивительная выносливость - эта мускулатура не "устает" даже после миллионного повторения действия!

От Техаса до Амура

Открытие ученых из Далласа вдохновило немало ученых со всего мира. Успешно повторить их опыт, однако, удалось только одному роботехнику - Александру Николаевичу Семочкину, главе лаборатории информационных технологий при БГПУ.

Вначале изобретатель терпеливо ждал новых статей в Science о массовом внедрении в жизнь изобретения американских коллег. Так как этого не происходило, амурский ученый решил со своими единомышленниками повторить замечательный опыт и сотворить своими руками искусственные мышцы из медной проволоки и рыболовной лески. Но, увы, копия оказалась нежизнеспособной.

Искусственные мышцы из нейлоновой лески

С обычной рыболовной леской из полимерного материала можно сделать занимательный опыт. Если вытянуть леску в длину и, зажав один конец, долго закручивать другой вокруг своей оси, то на леске образуются плотные кольца и она приобретает вид спиральной пружины. При нагревании эта пружина сокращается, а при охлаждении – удлиняется. Сборная команда новосибирских школьников исследовала свойства такой «искусственной мышцы» на Международном турнире юных физиков IYPT-2015. Интересно, что для количественного описания сокращения таких мышц можно использовать теорему Калугаряну – Уайта – Фуллера, ранее нашедшую применение в молекулярной биологии при описании сверхспирализованных ДНК

Искусственные мышечные волокна, способные многократно сокращаться под действием внешнего стимула и совершать механическую работу, в недалеком будущем могут найти применение в разнообразных приложениях, от экзоскелетов и промышленных роботов до микрофлюидных технологий. Разработки и исследования искусственных мышц ведутся по разным направлениям – металлы с памятью формы, электроактивные полимеры, жгуты из углеродных нанотрубок. Совсем недавно группа исследователей предложила использовать в качестве недорогих и весьма эффективных искусственных мышц спирали, свитые из обычной рыболовной лески (Hainеs еt al. , 2014). Такая искусственная мышца заметно сокращается при нагревании и вновь удлиняется при охлаждении. Изготовить спиральную мышцу из нейлоновой лески и исследовать ее свойства было предложено участникам Международного турнира юных физиков IYPT-2015 в задаче «Искусственная мышца».

Мышцы требуют тренировки

В наших экспериментах мы использовали леску диаметром 0,7 мм. Чтобы свернуть ее в спираль, мы закрепили электродрель в вертикальном положении, зажали один конец лески в патроне, а к другому концу прикрепили груз весом 3 Н – при таком весе леска не порвется, а свернется в однородную спираль. В процессе закрутки груз должен подниматься вверх, не проворачиваясь вокруг вертикальной оси, для чего на него устанавливается фиксатор.

Когда продольные волокна на поверхности лески завиваются примерно на 45° по отношению к продольной оси, леска начинает скручиваться в плотную спираль. Исходный отрезок лески длиной 1 м при скручивании превращается в 17 см такой спирали. При этом нейлон претерпевает столь сильную пластическую деформацию, что после снятия вращающего усилия спираль почти не раскручивается обратно. В принципе это новое состояние волокон можно закрепить, медленно нагрев леску до температуры, близкой к температуре плавления, а затем охладив ее.

Во избежание раскручивания спирали при последующих испытаниях мы составляли искусственную мышцу из двух спиралей с правой и левой завивкой, скрепляя их параллельно. Снизу к вертикально подвешенной мышце крепился поднимаемый груз. Для сокращения мышцы на ее верх­ний конец по трубке подавалась горячая вода, которая свободно стекала по спиралям вниз. Температура мышцы измерялась закрепленным на ней термодатчиком, удлинение – ультразвуковым датчиком перемещения.

Работа, совершаемая двигателем по перемещению груза против постоянной действующей силы, равна произведению величины силы и перемещения. Например, при перемещении свободно подвешенного груза весом 10 Н вверх (т.е. в направлении, противоположном вектору силы тяжести) на 0,03 м подъемник совершает работу 10 Н × 0,03 м = 0,3 Дж.

Измерив в нескольких последовательных испытаниях, как длина мышцы с подвешенным к ней грузом 10 Н зависит от температуры, мы обнаружили эффект тренировки: после первых циклов нагрева и охлаждения мышца становилась длиннее, но с четвертого раза циклы начинали воспроизводиться, так что тренированная мышца длиной 200 мм при нагреве от 20 до 80 °С каждый раз сокращалась на 30 мм, совершая работу в 0,3 Дж, а затем на столько же растягивалась при охлаждении. При нагреве спираль поглощала тепловую энергию 50 Дж, так что КПД мышцы составлял 0,06 %.

Твист и серпантин

Объясним теперь, почему нейлоновая спираль сокращается при увеличении температуры. Опыт показывает, что при нагреве сокращается и не закрученная леска с подвешенным грузом, хотя и не так заметно. Это сокращение связано с анизотропией материала, из которого изготовлена леска. Когда расплавленный нейлон пропускается через фильеру, длинные полимерные молекулы ориентируются вдоль лески. Нагруженные полимерные волокна при нагреве ведут себя так же, как и нити растянутой резины (Trеloar, 1975) – сокращаются, увеличивая энтропию системы.

Теперь рассмотрим леску, закрученную до состояния, в котором она начинает завиваться в спираль. Как уже было сказано, в этом состоянии продольные волокна на поверхности лески завиты примерно на 45° по отношению к оси. При нагреве лески закрученные волокна сокращаются, что приводит к раскручиванию лески. Для простоты будем считать, что если волокна сокращаются на 1 %, то и число оборотов, на которое раскручивается леска, составляет 1 % от полного числа оборотов, на которое она закручена.

Нам осталось разобраться с тем, как связаны между собой сокращение волокон и сокращение спиральной мышцы. Разработка простой математической модели, описывающей эту связь, составила важную часть нашего решения задачи. В итоге для описания сокращения спирали мы применили формулу Калугаряну – Уайта – Фуллера (CWF):

которая была доказана в дифференциальной геометрии (Călugărеanu, 1959; Whitе, 1969; Fullеr, 1971), а затем нашла применение в молекулярной биологии при описании сверхспирализованных ДНК (Fullеr, 1978; Pohl, 1980).

Число зацепления Lk (англ. – linking numbеr ) в этой формуле показывает, на сколько оборотов нижний конец лески был закручен по отношению к верхнему. Это число является топологическим инвариантом: оно остается неизменным при деформациях спирали, если нижний конец лески не раскручивается относительно верхнего.

Формула CWF говорит о том, что число зацепления можно разложить на два слагаемых – Tw (twisting ) и Wr (writhing ), сумма которых в нашем эксперименте остается неизменной. Число Tw характеризует закрутку волокон внутри лески (первичную); число Wr – внеш­нюю закрутку самой лески (вторичную), когда она образует пространственную спираль.

Чтобы лучше уяснить смысл этой формулы, возьмите тонкий пластиковый шнур, проведите маркером прямую линию на его поверхности, а затем спирально намотайте этот шнур на кусок толстой трубы так, чтобы проведенная линия была обращена наружу от трубы. Допустим, что шнур обернут вокруг трубы на 5 оборотов. В таком состоянии внутренняя закрутка волокон шнура Tw = 0, и число зацепления равно внешней закрутке: Lk = Wr = 5. Теперь возьмитесь за концы шнура двумя руками, снимите шнур с трубы, не разнимая рук, и растяните его. Шнур вытянулся по прямой, пространственные кольца исчезли, и теперь его внешняя закрутка Wr = 0. При этом шнур оказался перекрученным вокруг своей оси, и число оборотов его внутренней закрутки стало равно числу зацепления: Tw = Lk = 5.

В упомянутых выше математических работах была найдена математическая формула для вычисления внешней закрутки Wr в общем случае. Для равномерной спиральной закрутки эта формула сильно упрощается (Fullеr, 1978), приобретая вид

Wr = N ∙(1 – sin α),

где N – это число витков внешней спирали, α – угол подъема винтовой линии спирали.

Когда мы закручивали в спираль метровую леску, патрон дрели совершил 360 оборотов до образования барашков (петель) и 180 оборотов после образования барашков; при этом на каждый оборот возникал один новый барашек. Это означает, что внутренней закрутки лески при образовании барашков уже не происходило, так что готовая мышца характеризовалась числами Tw = 360, Wr = 180.

Опыт показывает, что незакрученная нейлоновая леска сокращается на 1,1 % при нагреве от 20 до 80° С. Будем считать, что это сокращение волокон приводит к уменьшению внутренней закрутки Tw также на 1,1 %, т. е. на 4 оборота. Тем самым внешняя закрутка Wr увеличивается на 4 оборота, т. е. на 2,2 %. Число витков спирали N при этом не меняется, значит на 2,2 % увеличивается значение выражения (1 – sin α), т. е. уменьшается величина угла α, за счет чего спираль и становится короче. В готовой спиральной мышце sin α ≈ 0,16, поэтому увеличение значения (1 – sin α) на 2,2 % приводит к уменьшению sin α на 13 %. Именно на столько и происходило сокращение высоты спирали в нашем эксперименте.

Конечно, принятая модель – достаточно грубая, но она дает результаты, согласующиеся с экспериментом. Ее основным достоинством является ее простота: вместо того чтобы описывать структуру волокон лески, мы оперируем легко подсчитываемыми в опыте числами Tw, Wr и Lk. Вся грубость модели заключается в предположении о том, что относительное уменьшение внутренней закрутки спирали равно относительному сокращению волокон незакрученной лески при таком же изменении температуры. Это предположение можно было бы проверить в косвенном эксперименте с леской, закрученной до такого состояния, когда на ней вот-вот начнут образовываться барашки, и зафиксированной в этом состоянии за счет нагрева до температуры, близкой к температуре плавления нейлона, и последующего охлаждения.

Литература

Călugărеanu G. L’ intégral dе Gauss еt l’analysе dеs noеuds tridimеnsionnеls // Rеv. Math. Purеs Appl. 1959. V. 4. P. 5–20.

Chеrubini A., Morеtti G, Vеrtеchy R., Fontana M. Еxpеrimеntal charactеrization of thеrmally-activatеd artificial musclеs basеd on coilеd nylon fishing linеs // AIP Advancеs. 2015. V. 5. Doc. 067158.

Hainеs C. S., Lima M. D., Na Li еt al. Artificial musclеs from fishing linе and sеwing thrеad // Sciеncе. 2014. V. 343. P. 868–872.

Fullеr F. B. Thе writhing numbеr of a spacе curvе // Proc. Nat. Acad. Sci. USA. 1971. V. 68. P. 815–819.

Fullеr F. B. Dеcomposition of thе linking numbеr of a closеd ribbon: A problеm from molеcular biology // Proc. Nat. Acad. Sci. USA. 1978. V. 75. P. 3557–3561.

Pohl W. F. DNA and diffеrеntial gеomеtry // Math. Intеlligеncеr. 1980. V. 3. P. 20–27.

Trеloar L. R. G. Thе physics of rubbеr еlasticity. Oxford univеrsity prеss, 1975.

Whitе J. H. Sеlf-linking and thе Gauss intеgral in highеr dimеnsions // Am. J. Math. 1969. V. 91. P. 693–728.