Аэробное и анаэробное дыхание растений. Аэробное и анаэробное дыхание Примером анаэробного дыхания является

Клеточное дыхание - это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы - гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона - восстановление. Окисляемое вещество - это донор, а восстанавливаемое - акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул - универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

    в матриксе митохондрий – , или цикл трикарбоновых кислот,

    на внутренней мембране митохондрий – , или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C 6 H 12 O 6 + 6H 2 O → 6CO 2 + 12H 2 + 4АТФ

Дыхательная цепь: 12H 2 + 6O 2 → 12H 2 O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH 3 COCOOH (пируват) → CH 3 CHO (ацетальдегид) + CO 2

CH 3 CHO + НАД · H 2 → CH 3 CH 2 OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH 3 COCOOH + НАД · H 2 → CH 3 CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.

Дыхание - совокупность реакций биологического окисления органических енерговмисних веществ с выделением энергии, необходимой для жизнедеятельности организма. Дыхание является процессом, при котором атомы водорода (электроны) переносятся от органических веществ на молекулярный кислород. Выделяют два основных типа дыхания: анаэробное и аэробное.

Аэробное дыхание - совокупность процессов, осуществляющих окисление органических веществ и получения энергии с участием кислорода. Расщепление органических веществ является полным и происходит с образованием конечных продуктов окисления Н2О и СО2. Характерно аэробное дыхание для подавляющего большинства организмов и проходит в митохондриях клетки. Аэробные организмы в процессе дыхания могут окиснюваты различные органические соединения: углеводы, жиры, белки и т. В аэробных организмов окисления протекает с использованием кислорода в качестве акцептора (приемника) электрона до углекислого газа и воды. Аэробное дыхание - самый способ образования энергии. В основе - полное расщепление, которое происходит с участием реакций бескислородного и кислородного этапов энергетического обмена. Аэробное дыхание играет основную роль в обеспечении клеток энергией и рощепленни веществ до конечных продуктов окисления - воды и углекислого газа.

Ядро - это крепость, где спрятана главная разгадка самовоспроизведению жизни.

Введение

1. Аэробное дыхание

1.1 Окислительное фосфолирование

2. Анаэробное дыхание

2.1 Типы анаэробного дыхания

4.Список литературы

Введение

Дыхание присуще всем живым организмам. Оно представляет собой окислительный распад органических веществ, синтезированных в процессе фотосинтеза, протекающих с потреблением кислорода и выделением диоксида углерода. А.С. Фаминцын рассматривал фотосинтез и дыхание как две последовательные фазы питания растений: фотосинтез готовит углеводы, дыхание перерабатывает их в структурную биомассу растения, образуя в процессе ступенчатого окисления реакционноспособные вещества и освобождая энергию, необходимую для их превращения и процессов жизнедеятельности в целом. Суммарное уравнение дыхания имеет вид:

CHO + 6O → 6CO + 6HO + 2875кДж.

Из этого уравнения становится ясно, почему именно скорость газообмена используют для оценки интенсивности дыхания. Оно было предложено в 1912 г. В. И. Палладиным, который считал, что дыхание состоит из двух фаз - анаэробной и аэробной. На анаэробном этапе дыхания, идущем в отсутствие кислорода, глюкоза окисляется за счет отнятия водорода (дегидрирования), который, по мнению ученого, передается на дыхательный фермент. Последний при этом восстанавливается. На аэробном этапе происходит регенерация дыхательного фермента в окислительную форму. В. И. Палладин впервые показал, что окисление сахара идет за счет непосредственного окисления его кислородом воздуха, поскольку кислород не встречается с углеродом дыхательного субстрата, а связано с его дегидрированием.

Существенный вклад в изучение сути окислительных процессов и химизма процесса дыхания внесли как отечественные (И.П. Бородин, А.Н.Бах, С.П. Костычев, В.И. Палладин), так и зарубежные (А.Л. Лавуазье, Г. Виланд, Г. Кребс) исследователи.

Жизнь любого организма неразрывно связана с непрерывным использованием свободной энергии, генерируемой при дыхании. Неудивительно, что изучению роли дыхания в жизни растения в последнее время отводят центральное место в физиологии растений.

1. Аэробное дыхание

Аэробное дыхание - это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

- бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

- кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.) Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз - многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С). При этом образуется две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД (никотинамидадениндинклеотид), который переходит в свою восстановительную форму НАД ∙ Н + Н. НАД кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты - одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

а второй присоединяется к НАД или НАДФ целиком:

НАД+ Н + [Н+ е] → НАД ∙ Н + Н.

Свободный протон позднее используется для обратного окисления кофермента. Суммарно реакция гликолиза имеет вид

CHO +2АДФ + 2НРО + 2 НАД→

2СНО + 2АТФ + 2 НАД ∙ Н + Н+ 2 HO

Продукт гликолиза - пировиноградная кислота (СНО) - заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до COи HO. Этот процесс можно разделить на три основные стадии:

  1. окислительное декарбоксилирование пировиноградной кислоты;
  2. цикл трикарбоновых кислот (цикл Кребса);
  3. заключительная стадия окисления - электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А, в результате чего образуется ацетилкофермент а с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO(первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н.

Вторая стадия - цикл Кребса (рис. 1)

В цикл Кребса вступает ацетил-КоА, образованный на предыдущей стадии. Ацетил-КоА взаимодействует со щавелево-уксусной кислотой, в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. В конце цикла щавелево-лимонная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + 3HO + 3НАД+ ФАД + АДФ + НРО→

КоА + 2CO+ 3НАД ∙ Н + Н+ФАД ∙ H+ АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется 3CO, 4 НАД ∙ Н + Н, ФАД ∙ H. Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

CHO + 6 HO + 10 НАД + 2ФАД →

6CO+ 4АТФ + 10 НАД ∙ Н + Н+ 2ФАД ∙ H.

Третья стадия - электротранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов, окисляются молекулярным кислородом до HO с одновременным фосфолированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ Hи ФАД ∙ H, передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2 Н + 2е. Движущей силой транспорта атомов водорода в дыхательной цепи является разность потенциалов.

С помощью переносчиков ионы водорода Нпереносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство (рис. 2).

При переносе пары электронов от над на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе протоны переносятся на внутреннюю сторону мембраны и акцептируются кислородом:

½ O + 2е → O.

В результате такого переноса ионов Нна внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается концентрация их, т.е. возникает электрохимический градиент протонов.

Когда протонный градиент достигает определенной величины, ионы водорода из Н-резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О, и образуется вода: 2Н+ О²ˉ → HO.

1.1 Окислительное фосфолирование

Процесс образования АТФ в результате переноса ионов Нчерез мембрану митохондрии получил название окислительного фосфолирования. Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Н через мембрану).

Суммарное уравнение аэробного дыхания можно выразить следующим образом:

CHO + O+ 6HO + 38АДФ + 38НРО→

6CO+ 12HO + 38АТФ

Совершенно очевидно, что аэробное дыхание прекратится в отсутствии кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии дл образования АТФ окажется блокированным.

аэробное дыхание окисление фотосинтез

2. Анаэробное дыхание

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный кислород, а другие окисленные соединения, например, соли азотной, серной и угольной кислот, превращающиеся при этом в более восстановленные соединения. Процессы идут в анаэробных условиях, и их называют анаэробным дыханием:

2HNO + 12Н→ N + 6HO + 2Н

HSO + 8Н→ HS + 4HO

У микроорганизмов, осуществляющих такое дыхание, конечным акцептором электронов будет не кислород а неорганическое соединения - нитриты, сульфаты и карбонаты. Таким образом, различия между аэробным и анаэробным дыханием заключается в природе конечного акцептора электронов.

2.1 Типы анаэробного дыхания

Основные типы анаэробного дыхания приведены в таблице 1. есть также данные об использовании бактериями в качестве акцепторов электронов Mn, хроматов, хинонов и др.

Таблица 1 Типы анаэробного дыхания у прокариот (по: М.В Гусев, Л.А. Минеева 1992, с изменениями)

Энергетический процесс

Конечный акцептор электронов

Продукты восстановления

Нитратное дыхание и нитрификация

Сульфатное и серное дыхание

“Железное ” дыхание

Карбонатное дыхание

СН, ацетат

Фумаратное дыхание

Сукцинат

Свойство организмов переносить электроны на нитраты, сульфаты и карбонаты обеспечивает в достаточной степени полное окисление органического или неорганического вещества без использования молекулярного кислорода и обуславливает возможность получения большого количества энергии, чем при брожении. При анаэробном дыхании выход энергии только на 10% ниже. Чем при аэробном. Организмы, для которых характерно анаэробное дыхание, имеют набор ферментов электронтранспортной цепи. Но цитохромоксилаза в них заменяется нитратредуктазой (при использовании в качестве акцептора электронов нитрата) или аденилсульфатредуктазой (при использовании сульфата) или другими ферментами.

Организмы, способные осуществлять анаэробное дыхание за счет нитратов, - факультативные анаэробы. Организмы, использующие сульфаты в анаэробном дыхании, относятся к анаэробам.

Вывод

Органические вещества из не органических зеленое растение образует только на свету. Эти вещества используются растением только для питания. Но растения не только питаются. Они дышат, как все живые существа. Дыхание происходит непрерывно днем о ночью. Дышат все органы растения. Растения дышат кислородом, а выделяют углекислый газ, как животные и человек.

Дыхание растений может происходить, как в темноте, так и на свету. Значит, на свету в растении протекают два противоположных процесса. Один процесс - фотосинтез, другой - дыхание. Во время фотосинтеза создаются органические вещества из неорганических и поглощается энергия солнечного света. Во время дыхания в растении расходуются органические вещества. А энергия, необходима для жизнедеятельности, освобождается. На свету в процессе фотосинтеза растения поглощают углекислый газ и выделяют кислород. Вместе с углекислым газом растения на свету поглощают из окружающего воздуха и кислород, необходимый растениям для дыхания, но в гораздо меньших количествах, чем выделяются при образовании сахара. Углекислого газа при фотосинтезе растения поглощают гораздо больше, чем выделяют его придыхании. Декоративные растения в комнате при хорошем освещении выделяют днем значительно больше кислорода, чем поглощают его в темноте ночью.

Дыхание во всех живых органов растения происходит непрерывно. Когда прекращается дыхание, растение, так же как и животное погибает.

Список литературы

1. Физиология и биохимия сельскохозяйственных растений Ф50/Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др.; под. ред. Н.Н. Третьякова. - М.; Колос, 2000 - 640 с.

2. Биология в экзаменационных вопросах и ответах Л44/ Лемеза Н.А., Камлюк Л.В.; 7-е изд. - М.: Айрис-пресс, 2003. - 512 с.

3. Ботаника: Учеб. Для 5-6 кл. сред. Шк.-19-е изд./Перераб. А.Н. Сладковым. - М.: Просвещение, 1987. - 256 с.

Аэробное дыхание - это окислительный процесс, в ходе которого расходуется кислород . При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

  • бескислородный , в процессе которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);
  • кислородный , в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т. п). Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз - многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (C 6) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (C 3). При этом образуются две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД + (никотинамидадениндинуклеотид), который переходит в свою восстановленную форму НАД ∙ H + H + . НАД - кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты - одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

H → H + + e - ,

а второй присоединяется к НАД или НАДФ целиком:

НАД + + H + → НАД ∙ H + Н + .

Свободный протон позднее используется для обратного окисления кофермента.

Суммарно реакция гликолиза имеет вид:

C 6 H 12 O 6 + 2АДФ + 2Н 3 РO 4 + 2НАД + → 2C 3 H 4 O 3 + 2АТФ + 2НАД ∙ H + H + + 2Н 2 O.

Продукт гликолиза - пировиноградная кислота (C 3 H 4 O 3) - заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до CO 2 и H 2 O. Этот процесс можно разделить на три основные стадии:

  1. окислительное декарбоксилирование пировинофадной кислоты;
  2. цикл трикарбоновых кислот (цикл Кребса);
  3. заключительная стадия окисления - электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А (сокращенно его обозначают КоА), в результате чего образуется адетилкофермент А с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO 2 (первая) и атомы водорода, которые запасаются в форме НАД ∙ H + H + .

Вторая стадия - цикл Кребса (названный так в честь открывшего его английского ученого Ганса Кребса).

В цикл Кребса вступает ацетил-КоА, образованный на предыдущей стадии. Ацетил-КоА взаимодействует со щавелево-уксусной кислотой (четырехутлеродное соединение), в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. Далее превращение идет через образование ряда органических кислот, в результате чего ацетильные группы, поступающие в цикл при гидролизе ацетил-КоА, дегидрируются с высвобождением четырех пар атомов водорода и декарбоксилируются с образованием двух молекул CO 2 . При декарбоксилировании для окисления атомов углерода до CO 2 используется кислород, отщепляемый от молекул воды. В конце цикла щавелево-уксусная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. В процессе цикла используются три молекулы воды, выделяются две молекулы СO 2 и четыре пары атомов водорода, которые восстанавливают соответствующие коферменты (ФАД - флавина-дениндинуклеотид и НАД). Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + ЗH 2 O + ЗНАД + + ФАД + АДФ + H 3 PO 4 → КоА + 2CO 2 + ЗНАД ∙ H + H + + ФАД ∙ H 2 + АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется ЗCO 2 , 4НАД ∙ H + H + , ФАД ∙ H 2 .

Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

C 6 H 12 O 6 + 6H 2 O + 10НАД + + 2ФАД → 6CO 2 + 4АТФ + 10НАД ∙ H + H + + 2ФАД ∙ H 2 .

Третья стадия - электронтранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов окисляются молекулярным кислородом до H 2 O с одновременным фосфорилированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ H 2 и ФАД ∙ H 2 , передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2H можно рассматривать как 2H + + 2e - . Именно в таком виде они и передаются по цепи переносчиков. Путь переноса водорода и электронов от одной молекулы переносчика к другой представляет собой окислительно-восстановительный процесс. При этом молекула, отдающая электрон или атом водорода, окисляется, а молекула, воспринимающая электрон или атом водорода, восстанавливается. Движущей силой транспорта атомов водорода в дыхательной цели является разность потенциалов.

С помощью переносчиков ионы водорода H + переносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство.

При переносе пары электронов от НАД на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе электроны переносятся на внутреннюю сторону мембраны и акцептируются кислородом.

½O 2 + 2e - → O 2- .

В результате такого переноса ионов H + на внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается повышенная концентрация их, т. е. возникает электрохимический градиент протонов (ΔμH +).

Протонный градиент представляет собой как бы резервуар свободной энергии. Эта энергия используется при обратном потоке протонов через мембрану для синтеза АТФ. В ряде случаев может наблюдаться непосредственное использование энергии протонного градиента (ΔμH +). Она может обеспечивать осмотическую работу и транспорт веществ через мембрану против градиента их концентрации, использоваться на механическую работу и др. Таким образом, клетка располагает двумя формами энергии - АТФ и ΔμH + . Первая форма - химическая. АТФ растворяется в воде и легко используется в водной фазе. Вторая (ΔμH +) - электрохимическая - неразрывно связана с мембранами. Эти две формы энергии могут переходить друг в друга. При образовании АТФ используется энергия ΔμH + , при распаде АТФ энергия может аккумулироваться в виде ΔμH + .

Когда протонный градиент достигает определенной величины, ионы водорода из H + -резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками O 2- , и образуется вода: 2H + + O 2- → H2O.

Процесс образования АТФ в результате переноса ионов H + через мембрану митохондрии получил название окислительного фосфорилирования . Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов H + через мембрану).

Следует обратить внимание на то, что ферментные системы ориентированы в митохондриях противоположно тому, как это имеет место в хлоропластах: в хлоропластах H + -резервуар находится с внутренней стороны внутренней мембраны, а в митохондриях - с ее наружной стороны; при фотосинтезе электроны движутся в основном от воды к переносчикам атомов водорода, при дыхании же переносчики водорода, передающие электроны в электронтранспортную цепь, находятся с внутренней стороны мембраны, а электроны в конечном счете включаются в образующиеся молекулы воды.

Кислородный этап, таким образом, дает энергии в 18 раз больше, чем ее запасается в результате гликолиза. Суммарное уравнение аэробного дыхания можно выразить следующим образом:

C 6 H 12 O 6 + 6O 2 + 6H 2 O + 38АДФ + З8H 3 PO 4 → 6CO 2 + 12H 2 O + 38АТФ.

Совершенно очевидно, что аэробное дыхание прекратится в отсутствие кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии для образования АТФ окажется блокированным.

Аэробное дыхание – это процесс, при котором клетки, которые не дышат кислородом, высвобождают энергию из топлива для своих жизненных функций.

Молекулярный кислород самый эффективный акцептор электрона для дыхания, должный к своему сродству ядра высокому для электронов. Однако, некоторые организмы эволюционировали для использования других окислителей, и как таковой, эти выполняют дыхание без кислорода.

Эти организмы также использовать электронно-транспортной цепи, чтобы вырабатывать столько же АТФ, как можно дальше от их топлива, но их электронно-транспортных цепей извлечения меньше энергии, чем аэробное дыхание, потому что их акцептором электронов слабее.

Многие бактерии и археи могут выполнять только анаэробное дыхание. Многие другие организмы могут выполнять аэробное или анаэробное дыхание в зависимости от наличия кислорода.

Люди и другие животные полагаются на аэробное дыхание для того чтобы остаться живыми, но могут расширить их жизни или представление клеток в отсутствии кислорода путем использование форм анаэробного дыхания.

Функция Анаэробного дыхания

Дыхание-это процесс, с помощью которого энергия, хранящаяся в топливе, преобразуется в форму, которую может использовать клетка. Как правило, энергия, хранящаяся в молекулярных связях молекулы сахара или жира, используется для создания АТФ, путем извлечения электронов из молекулы топлива и использования их для питания транспортной цепи электронов.

Дыхание имеет решающее значение для выживания клетки, потому что если она не может освободить энергию от топлива, чтобы управлять своими жизненными функциями, клетка умрет.

Вот почему воздух-дыша организмы умирают так быстро без постоянн поставкы кислорода: наши клетки не могут произвести достаточную энергию для того чтобы остаться живыми без его.

Вместо кислорода, анаэробные клетки используют вещества, такие как сульфат, нитрат, сера, и фумарат гнать их клеточное дыхание.

Многие клетки могут выполнять аэробное или анаэробное дыхание в зависимости от наличия кислорода.

Изображение ниже иллюстрирует тест пробирки whereby ученые могут определить если организм:

  • Облигатный Аэроб – организм, который не может выжить без кислорода
  • Облигатный анаэроб – организм, который не может выжить в присутствии кислорода
  • В аэротолерантных организм – организм, который может жить в присутствии кислорода, но не использовать его, чтобы расти
  • Факультативный Аэроб – организм, который может использовать кислород, чтобы расти, но также может выполнять и анаэробное дыхание

Где Происходит Анаэробное Дыхание?

Анаэробное дыхание происходит в цитоплазме клеток. Действительно, большинство клеток, которые используют анаэробное дыхание, – это бактерии или археи, у которых нет специализированных органелл.

Что общего между Анаэробным дыханием и Аэробным дыханием?

И аэробное и анаэробное дыхание начинает с разделять молекулы сахара в вызванном процессе “гликолизом.”Этот процесс уничтожает 2 молекулы АТП и создает 4 АТП, для чистого увеличения 2 АТП в молекулу сахара которая разделена.

И в аэробном и анаэробном дыхании, 2 половины молекулы сахара после этого посланы через другую серию реакций которые используют цепи перехода электрона для того чтобы произвести больше ATP.

Именно эти реакции требуют акцептора электронов – будь то кислород, сульфат, нитрат и т.д. – чтобы управлять ими.

В чем разница между Аэробным дыханием и Анаэробным дыханием?

После гликолиза аэробные и анаэробные клетки направляют две половинки глюкозы через длинную цепь химических реакций, чтобы генерировать больше АТФ и извлекать электроны для использования в их транспортной цепи электронов.

Однако, что эти реакции, и где они случаются, меняют между аэробными и анаэробными клетками.

В аэробных клетках, электрон-транспортной цепи, и большинство химических реакций дыхания, происходит в митохондриях. Система мембран mitochondria делает процесс очень более эффективным путем концентрировать химические реактанты дыхания совместно в одном малом космосе.

В анаэробных клетках, однако, дыхание типично осуществляет в цитоплазме клетки, в виду того что большинств анаэробные клетки не имеют специализированные органеллы. Серия реакций типично коротке, и использует акцептор электрона как сульфат, нитрат, сера, или фумарат вместо кислорода.

Анаэробное дыхание также производит меньше ATP для каждой усваиваемой молекулы сахара чем аэробное дыхание. Кроме того, она производит различные отходы производства-в том числе, в некоторых случаях, алкоголь!

Виды Анаэробного дыхания

Виды анаэробного дыхания столь же разнообразны, как и его акцепторы электронов. Важные типы анаэробного дыхания включают:

  • Молочная кислота брожения – в этот тип анаэробного дыхания, глюкоза распадается на две молекулы молочной кислоты, чтобы произвести два АТП.
  • Спиртовое брожение – в этот тип анаэробного дыхания, глюкозы расщепляется на этанол, или этиловый спирт. Этот процесс также производит 2 АТП в молекулу сахара.
  • Другие типы брожения – прочая ферментации выполняются некоторые бактерии и археи. Эти вклюают proprionic кисловочное заквашивание, заквашивание масляной кислоты, растворяющее заквашивание, смешанное кисловочное заквашивание, заквашивание butanediol, stickland заквашивание, acetogenesis, и methanogenesis.

Уравнения Анаэробного Дыхания

Уравнения для двух наиболее распространенных типов анаэробного дыхания:

* Заквашивание молочной кислоты:

С 6 н 12 О 6 (глюкоза)+ 2 АДФ + фосфат 2 → 2 молочная кислота + 2 АТФ

Спиртовое брожение:

С 6 н 12 О 6 (глюкоза) + 2 АДФ + 2 фосфат → 2С 2 Н 5 он (этанол) + 2 со 2 + 2 СПС

Примеры Анаэробного дыхания

Больные мышцы и молочная кислота

Во время интенсивной тренировки, наши мышцы используют кислород для того чтобы произвести ATP более быстро чем мы можем поставить его.

Когда это случается, мышечные клетки могут выполнить гликолиз более быстро чем они могут поставить кислород к митохондриальной цепи перехода электрона.

Результат что заквашивание молочной кислоты происходит внутри наши клетки – и после увеличиваемой тренировки, построенная молочная кислота может сделать наши мышцы болит!

Дрожжи и алкогольные напитки

Алкогольные напитки, такие как вино и виски, обычно производятся путем розлива дрожжей-которые выполняют алкогольную ферментацию – с раствором сахара и других вкусовых соединений.

Дрожжи могут использовать сложные включая те найденные в картошках, виноградинах, мозоли, и много других зерен, как источники сахара.

Помещать дрожжи и свой источник топлива в воздухонепроницаемую бутылку обеспечивает что не будет достаточный кислород вокруг для того чтобы помешать с анаэробным дыханием которое производит спирт!

Алкоголь на самом деле токсичен для дрожжей, которые его производят – когда концентрация алкоголя станет достаточно высокой, дрожжи начнут умирать.

По этой причине невозможно заварить вино или пиво с содержанием алкоголя более 30%. Однако процесс дистилляции, который отделяет спирт от других компонентов варева, может быть использован для концентрации спирта и получения крепких спиртовых напитков.

Метаногенез и опасные домочадцы

К сожалению, алкогольная ферментация-это не единственный вид ферментации, который может произойти в растительном веществе. Глюкоза заквашена в этиловый спирт – но различный вызванный спирт, метанолом, можно произвести от заквашивания различного сахара найденного в заводах.

Когда целлюлоза заквашена в метанол, результаты могут быть опасны. Опасности “самогон” – дешевые, самодельные виски, который часто содержит большое количество метанола из-за плохого пивоварения и дистилляции – были объявлены в 20 – го века во время сухого закона.

Смерть и повреждение нервов от отравления метанолом по-прежнему являются проблемой в районах, где неквалифицированные люди пытаются варить алкоголь дешево. Так что, если вы собираетесь стать пивоваром, убедитесь, что вы делаете свою домашнюю работу!

Швейцарский сыр и Пропионовая кислота

Заквашивание пропионовой кислоты дает швейцарскому сыру свой своеобразнейший флейвор. Отверстия в швейцарском сыре фактически сделаны пузырями газа углекислого газа выпущенного как неныжный продукт бактерий которые используют заквашивание пропионовой кислоты.

После внедрения более жестких санитарных норм в 20 – ом веке, многие производители швейцарского сыра были озадачены, чтобы найти, что их сыр был потерять ее отверстия – и его вкус!

Виной всему стало отсутствие специфических бактерий, продуцирующих пропионовую кислоту. На протяжении веков, эта бактерия была введена в качестве загрязняющего вещества из сена, который ели коровы. Но после введения более строгих стандартов гигиены этого больше не происходило!

Эти бактерии теперь добавлены преднамеренно во время продукции для того чтобы обеспечить что швейцарский сыр остается flavorful и сохраняет свое немедленно узнаваемое holey возникновение.

Уксус и Ацетогенез

Бактерии, которые выполняют ацетогенез, ответственны за изготовление уксуса, который состоит в основном из уксусной кислоты.

Уксус фактически требует 2 процессов заквашивания, потому что бактерии которые делают укусную кислоту требуют спирта как топливо!

Как таковой, уксус сперва заквашен в алкогольный препарат, как вино. Затем спиртовая смесь снова ферментируется с использованием ацетогенных бактерий.

связанный термин

  • АТП – клеточного “топлива”, которое может быть использовано для питания сотовых бесчисленное множество действий и реакций.
  • Окисление – важный процесс в химии, где электроны теряются. Молекула, которая потеряла электроны в процессе окисления, как говорят, была “окислена” или “была повышена степень окисления.”

Викторина

1. Все клетки выполняют гликолиз.
А. Правда
Б. Ложь

Ответ на вопрос № 1

Правда! Все ячейки сплит сахара, чтобы освободить часть химической энергии, запасенной в молекулах сахара. Некоторые клетки останавливают там, пока другие идут дальше использовать процессы заквашивания или аэробного дыхания для того чтобы получить очень больше энергии от частей сахара оставленных сверх после гликолиза.

[свернуть]

2. Процесс анаэробного дыхания объясняет, как некоторые клетки могут выжить без кислорода.
А. Правда
Б. Ложь

Ответ на вопрос № 2

Истинный. Анаэробное дыхание дает возможность клеткам, которые выполняют это, чтобы выжить без кислорода.

[свернуть]

3. Клетки могут жить без ATP, покуда они имеют сахар как источник еды.
А. Правда
Б. Ложь

Ложь! Все ячейки должны иметь АТП, чтобы выжить, как АТФ энергии в форме, они могут использовать для своих жизненных процессов.

Они могут превратить сахар в АТФ, но им требуется окислитель, который могут использовать их клетки – например, кислород. фумарат или сера-для этого.