Элементарная теория удара. Динамический коэффициент. Продольный и поперечный удар. II. Расчеты на удар тел Что будет, если я не дёрну кольцо парашюта

More meanings of this word and English-Russian, Russian-English translations for the word «ДИНАМИЧЕСКИЙ УДАР» in dictionaries.

  • УДАР — m. impact, blow, stroke, shock, thrust; упругий удар, elastic impact
  • ДИНАМИЧЕСКИЙ — adj. dynamic, power, forced; динамическая система, dynamical system
    Russian-English Dictionary of the Mathematical Sciences
  • УДАР — Collision
  • ДИНАМИЧЕСКИЙ — Dynamic
    Русско-Американский Английский словарь
  • УДАР — 1. (в разн. знач.) blow; stroke; воен. тж. thrust; (острым оружием) stab; (плетью) lash, …
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Англо-Русско-Английский словарь общей лексики - Сборник из лучших словарей
  • УДАР — body blow He has had a good many ups and downs in his life but his wife"s leaving him was …
  • ДИНАМИЧЕСКИЙ — ~ный dynamic dynamic
    Русско-Английский словарь общей тематики
  • УДАР — 1) beat 2) blow 3) impact 4) shock 5) физиол. stroke
    Новый Русско-Английский биологический словарь
  • УДАР — Impact
    Russian Learner"s Dictionary
  • УДАР — knock
    Russian Learner"s Dictionary
  • ДИНАМИЧЕСКИЙ — dynamic
    Russian Learner"s Dictionary
  • УДАР
    Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Русско-Английский словарь
  • УДАР — м. 1. (в разн. знач.) blow; stroke; воен. тж. thrust; (острым оружием) stab; (плетью) …
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Russian-English Smirnitsky abbreviations dictionary
  • УДАР — beat, blow, brunt, bump, clashing, crack, impulse, flap, hit, impact, impingement, kick, percussion, impact shock, shock, slap, stroke, thrust
  • ДИНАМИЧЕСКИЙ — dynamics, (о нагрузке) live
    Русско-Английский словарь по машиностроению и автоматизации производства
  • УДАР — муж. 1) (в разл. знач.) blow; воен. тж. thrust; (острым оружием) stab; (плетью) lash, slash; (ногой, копытом …
  • ДИНАМИЧЕСКИЙ — прил. dynamic
    Русско-Английский краткий словарь по общей лексике
  • УДАР — (механический) impulse, impact, knap, blow, cant, collision, shock, hit, jab, kick, knock, percussion, stroke, thrust
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский словарь по строительству и новым строительным технологиям
  • УДАР — Collision
  • ДИНАМИЧЕСКИЙ — Vigorous
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Sprightly
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Peppy
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Go-ahead
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Dynamics
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Dynamic
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Bouncy
    Британский Русско-Английский словарь
  • УДАР — impulse, impulsion, kick, knock
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский экономический словарь
  • УДАР — см. Размах на рубль — удар на копейку; см. Размах рублевый, удар фиговый
    Англо-Русско-Английский словарь сленга, жаргона, русских имен
  • УДАР — 1. blow (тж. перен.) (рубящий) chop; (колющий) stab, thrust; (столкновение) impact; (звук от толчка, сотрясения) crash, thud; ~ ногой kick; наносить ~ кому-л. deal*/strike* smb. a …
  • ДИНАМИЧЕСКИЙ — ~ный dynamic
    Русско-Английский словарь - QD
  • УДАР — blow
    Русско-Английский юридический словарь
  • УДАР — . Each impact of a molecule with (or on) a wall of the container ... . The impact …
    Русско-Английский научно-технический словарь переводчика
  • ДИНАМИЧЕСКИЙ — run-time
    Современный Русско-Английский словарь по машиностроению и автоматизации производства
  • УДАР — м. shock; beat; bump; knock - обратный удар
    Русско-Aнглийский автомобильный словарь
  • УДАР — impact
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский толковый словарь терминов и сокращений по ВТ, Интернету и программированию
  • УДАР — m impact
    Russian-English WinCept Glass dictionary
  • УДАР — impact
    Русско-Английский биологический словарь
  • УДАР — муж. 1) (в различных значениях) blow воен. тж. thrust (острым оружием) stab (плетью) lash, slash (ногой, копытом) kick (кулаком) punch, …
  • ДИНАМИЧЕСКИЙ — прил. dynamic динамич|еский -, ~ный dynamic
    Большой Русско-Английский словарь
  • УДАР — удар nock;kick;hit
  • ДИНАМИЧЕСКИЙ — динамический dynamic
    Русско-Английский словарь Сократ
  • STROKE
  • STRIKE
    Большой Англо-Русский словарь
  • KICK
    Большой Англо-Русский словарь
  • DYNAMICIZER — I параллельно - последовательный преобразователь II устройство преобразования (данных) из статической формы в динамическую; динамический регистр dynamicizer вчт. динамический регистр
    Большой Англо-Русский словарь
  • DYNAMICAL — прил. динамический Syn: dynamic динамический - * test (техническое) испытание на удар динамичный; активный, энергичный; движущий; живой - * …
    Большой Англо-Русский словарь

Вы задаёте нам вопросы — в письмах, по телефону, на аэродроме — вопросы разные и интересные. Самые распространённые и важные из них — с ответами — мы публикуем здесь. Раздел регулярно пополняется. Если Вы хотите узнать что-то ещё — , мы обязательно Вам ответим.

По ощущениям приземление (момент контакта ног с земной поверхностью) напоминает прыжок с двухметровой высоты. Представили? — в этом нет ничего страшного, если аккуратно приземлиться на две ноги и смягчить удар. А теперь представьте, что может быть, если прыгать с двух метров на одну ногу или размахивая ногами. Это уже опасно. Именно поэтому при подготовке к первому прыжку с парашютом наши инструктора особое внимание уделяют технике безопасности при приземлении.

Если в самолёте я испугаюсь, будут ли меня выталкивать?

Нет, никто не будет выбрасывать Вас из самолёта силой… могут лишь слегка подтолкнуть, если Вы замешкаетесь у двери, растерявшись от увиденного внизу. Однако мы настоятельно просим Вас: если Вы приняли сознательное решение «не буду прыгать с парашютом» уже в самолёте — сообщите об этом выпускающему или помощнику выпускающего до того, как будет открыта дверь и начнётся выброска. Тогда Ваш карабин вытяжного троса перестегнут в конец очереди, чтобы он не мешал тем, кто должен прыгать после Вас — и Вы спокойно приземлитесь в самолёте в сопровождении инструктора.

А если парашют не раскроется?..

Свои первые прыжки Вы будет совершать с десантными парашютами (Д-6, Д-1-5У, Д-1-5 с. 6), а десантные парашюты — это сверхнадёжные системы. С 1997 года через парашютный клуб центра «Валькирия» прошли десятки тысяч парашютистов-«перворазников», и не было ни одного случая , чтобы десантный парашют не раскрылся или работал неисправно.

Но даже при этом у Вас всё равно будет второй парашют — запасной, ещё более простой и, следовательно, более надёжный, чем десантный. О том, как пользоваться запасным парашютом, Вам расскажут на предварительной подготовке к прыжку.

Опасно ли приземляться на лес?

Нет, приземляться на лес на десантном парашюте не опасно. Даже, наверное, безопаснее, чем приземляться на поле — парашют повиснет на кронах деревьев, и Ваши ноги не коснутся земли (а на первом прыжке с парашютом это самое опасное). Как не оцарапаться о набегающие ветки — Вам расскажет инструктор, а спуститься с дерева поможет дежурная команда спасателей. По статистике аэродрома «Лепсари» за 2005 год вероятность приземления на лес не превышает 1%.

Что будет, если я не дёрну кольцо парашюта?

Если Вы не дёрнете кольцо парашюта через 3 секунды после отделения от летательного аппарата, тогда через 5 секунд сработает парашютный страхующий прибор — и Ваш парашют раскроется сам. Но это не значит, что кольцо парашюта можно не дёргать вовсе.

Что такое «прыжок с парашютом на стабилизацию падения»?

Стабилизация падения осуществляется для Вашей безопасности — чтобы Вы падали не беспорядочно, а ровно — тогда основной парашют, раскрываясь, ни за что не зацепится. Вы выходите из самолёта — и вытяжной трос сразу же раскрывает стабилизирующий парашют. Площадь стабилизирующего парашюта — всего 1,5 квадратных метра, этого мало, чтобы хоть сколько-нибудь замедлить скорость Вашего падения, но достаточно, чтобы не дать Вам сорваться в БП (беспорядочное падение). 3–5 секунд Вы падаете под стабилизирующим парашютом, затем раскрывается основной парашют.

Что такое «динамический удар»?

Не вдаваясь в физику и говоря простыми словами — динамический удар — это быстрая остановка падения в момент раскрытия парашюта. Многие начинающие парашютисты в эйфории первого прыжка с парашютом даже не чувствуют динамического удара.

Сколько длится свободное падение? Сколько я буду снижаться под куполом парашюта?

Если быть корректным, то свободное падение и снижение под стабилизирующим парашютом — вещи разные, но похожие по ощущениям. Если Вы совершаете простой прыжок с парашютом Д-6, то собственно свободное падение длится меньше секунды — до раскрытия стабилизирующего парашюта. Под стабилизирующим парашютом вы снижаетесь 3–5 секунд до раскрытия основного парашюта. Основной парашют будет над Вами до самой земли, всего 2–3 минуты, или, если Вас вдруг подхватит непредсказуемый восходящий поток, то 4–7 минут.

Как можно разнообразить простые прыжки с парашютом?

Если Вам надоели простые, похожие один на другой прыжки с парашютом Д-6 на стабилизацию падения — значит, Вам пора задуматься об обучении. Наша программа парашютной подготовки «Сигма» настолько удобная и доступная, что многие записываются на «Сигму» даже не для того, чтобы научиться до парашюта типа «крыло» — а просто разнообразить свои прыжки с парашютом. Вы учитесь — и на каждом прыжке с Вами индивидуально работает инструктор: даёт Вам теорию, ставит задание на прыжок, контролирует его исполнение и объясняет ошибки. Вы развиваетесь в умениях и знаниях, выполняете всё новые и новые упражнения, осваиваете новые типы парашютов. Прыжки с парашютом для Вас становятся интересными, не похожими один на другой.

Если обучение всё же не входит в Ваши планы (например, если Вы прыгаете с парашютом не чаще 1–2 раз в год) — Вы можете совершать усложнённые прыжки с парашютом. К усложнённым прыжкам относятся: показательный прыжок-«капля», прыжки с задержкой на стабилизацию падения, прыжки с парашютом ПТЛ-72, высотные прыжки с инструктором («выкатывание») и др. Для того чтобы совершать усложнённые прыжки с парашютом, Вам нужно получить III спортивный разряд (т.е. совершить минимум 3 прыжка с парашютом Д-6).

На рисунке 5.1 показаны нагрузки, действующие на балку. Равномерно распределённая нагрузка интенсивностью q представляет собой собственный вес балки, а нагрузка p i – инерционные силы. Сила S (уси-

лие в тросе) равна по величине равнодействующей нагрузок q и p i направлена в противоположную сторону, т.е. уравновешивает эти нагрузки.

Инерционные силы p i возникают после включения двигателя крана

и вызывают изгиб балки (дополнительно к изгибу от действия собственного веса q . В результате изгиба различные сечения балки перемещаются

при подъеме с различными ускорениями a . Поэтому в общем случае интенсивность p i инерционной нагрузки переменна по длине балки.

В частных случаях, например когда жёсткость балки при изгибе весьма велика или когда сечение A , в котором балка прикреплена к тросу, поднимается на значительную высоту с постоянным ускорением, влиянием деформаций балки, вызванных инерционными силами p i на

величины ускорений a , можно пренебречь. В этих случаях можно считать, что ускорения всех сечений балки одинаковы и равны ускорению сечения i равномерно распределена по длине балки.

Аналогично и при решении ряда других динамических задач можно пренебрегать влиянием деформаций системы на распределение в ней ускорений, а следовательно, и на распределение инерционных сил.

В качестве примера рассмотрим расчёт вертикального бруса постоянного сечения, поднимаемого вверх силой S , превышающей вес бруса G (рис. 5.1). Кроме силы S на брус действуют равномерно распределённая по его длине вертикальная нагрузка интенсивностью q = G l от соб-

ственного веса бруса и инерционная нагрузка

pi = (q g ) a .

Ускорение a направлено в сторону действия силы S , т.е. вверх, величину его принимаем одинаковой для всех поперечных сечений бруса. Поэтому нагрузка p i равномерно распределена по длине бруса и направ-

лена в сторону, противоположную ускорению, т.е. вниз.

Составляем уравнение равновесия в виде суммы проекций всех сил на вертикальную ось x :

∑ X = S − G − p i i = 0 , откуда p i = (S − G ) / l .

Нормальное напряжение в поперечном сечении бруса, отстоящем на расстояние x от его нижнего конца,

σ = (q + p )

S − G

Наибольшее напряжение возникает в верхнем сечении бруса:

σ max = S .

5.3. РАСЧЁТ НА ПРОЧНОСТЬ ПРИ УДАРЕ

Под ударной понимается всякая быстроизменяющаяся нагрузка. При ударе различные точки системы получают некоторые скорости, так что системе придаётся кинетическая энергия, которая переходит в потенциальную энергию деформации конструкции, а также в другие виды энергии – прежде всего в тепловую.

При определении динамических допускаемых напряжений следует учитывать изменение механических характеристик материала. Однако ввиду недостаточной изученности этого вопроса расчёт на прочность при динамической нагрузке обычно ведут по статическим характеристикам, т.е. условие прочности имеет вид

σ дmax ≤ [ σ ] .

При ударе возникают местные деформации в зоне контакта и общие деформации системы. Условимся рассматривать только общие деформации системы, и предположим, что динамические напряжения не превосходят предела пропорциональности материала.

Для приближённого определения напряжений и перемещений сечений в момент наибольшей деформации системы в практических расчётах применяется энергетический метод, который применим в тех случаях, когда скорость ударяющего тела мала по сравнению со скоростью распространения ударной волны, а время соударения значительно больше времени распространения этой волны по всей системе.

Таким образом, простейшая теория удара основана на следующих допущениях:

1. Удар считается неупругим , т.е. ударяющее тело продолжает двигаться вместе с ударяемой конструкцией, не отрываясь от неё. Иными словами ударяющее тело и ударяемая конструкция имеют общие скорости после удара.

2. Ударяемая конструкция имеет лишь одну степень свободы , и вся масса конструкции сосредоточена в точке удара.

3. Рассеянием энергии в момент удара пренебрегают, считая, что вся кинетическая энергия ударяющего тела переходит в потенциальную энергию деформации ударяемой конструкции, движение которой происходит при отсутствии сил сопротивления.

4. Ударяемая конструкция считается идеально упругой .

Это означает, что зависимость между динамическими усилиями и ими вызванными перемещениями, точно так же подчиняется закону Гука, как и при статическом действии нагрузок (рис. 5.2).

Отношение динамических и статических перемещений называется коэффициентом динамичности или динамическим коэффициентом

δд

δ ст

В соответствии с законом Гука

σд

R ст

σ ст

где σ д # динамические напряжения; σ ст # статические напряжения.

R ст

δ ст

δд

5.4. ВЕРТИКАЛЬНЫЙ УДАР

Предположим, что груз массой m падает с некоторой высоты h на упругую систему, масса которой мала по сравнению с массой груза. Упругую систему будем считать невесомой (рис. 5.3, а , б ).

Груз в процессе падения выполняет работу

h + δд

где δ д – динамический прогиб системы (перемещение точки удара) в мо-

мент наибольшей деформации.

На рисунке 5.4 показано, что работа соответствует площади прямоугольника abde , так как величина веса груза Q в процессе удара не меняется.

Q = mg

Q = mg

δд

δд

h + δст

h + δд

Данная работа накапливается в системе в виде потенциальной энергии, которая равна работе внутренней силы R , вызывающей прогиб S при ударе. На рисунке 5.2 эта потенциальная энергия с учётом принятых выше допущений соответствует площади треугольника acd , так как сила R изменяется от нуля до конечного значения, равного R д , по линейному

закону. Таким образом, потенциальная энергия равна

R дδ д

Приравняв выражения (5.4) и (5.5), с учётом уравнений (5.2) и (5.3)

δ ст

а при Q = R ст

kд 2

δ ст

Решая квадратное уравнение относительно k д , получим

δ ст

Положительный знак перед радикалом взят потому, что искомыми являются наибольшие деформации. Если груз после удара остаётся на упругой системе, то при отрицательном знаке перед радикалом решение данного уравнения даёт наибольшее отклонение точки удара при возвратном движении.

После нахождения k д , по уравнениям (5.2), (5.3) могут быть опреде-

лены динамические напряжения и деформации системы, которые будут в k д раз больше тех, которые имели бы место в системе при статическом

приложении груза Q .

Заметим, что упругие свойства системы, как видно из формулы (5.7), смягчают удар и, наоборот, сила удара тем больше, чем больше жёсткость системы.

Частный случай ударного нагружения – внезапное приложение груза, когда h = 0. В этом случае k д = 2 и a д = 2a ст , δ д = 2δ ст , т.е. при внезапном приложении нагрузки напряжения и деформации системы в два раза больше, чем при статическом нагружении.

5.5. ВЕРТИКАЛЬНЫЙ УДАР ВСЛЕДСТВИЕ ВНЕЗАПНОЙ ОСТАНОВКИ ДВИЖЕНИЯ

Удар вследствие внезапной остановки движения возникает, например, в тросе лифта при внезапной остановке кабины или в балке, на которой закреплён груз Q при жёсткой посадке самолёта, имеющего верти-

кальную посадочную скорость (рис. 5.5).

Использовать формулу (5.7) для определения коэффициента динамичности нельзя, так как к моменту удара балка уже воспринимает статическую нагрузку Q . Кинетическая энергия движущейся вертикально кон-

струкции равна T = QV 2 / 2g , работа груза на дополнительном перемещении (δ д − δ ст ) − А = Q (δ д − δ ст ) (площадь прямоугольника cdef рис. 5.4).

Работа переходит в дополнительную потенциальную энергию деформации балки:

U = 1 (R д + R ст )(δ д − δ ст ) ,

соответствующей площади трапеции bcde на рис. 5.2. Приравнивая T + A = U с учётом уравнений (5.2), (5.3), получим квадратное уравнение:

V 2 + 2 (k д −1 ) = (k д + 1 )(k д −1 ) ,

g δ ст

решая которое, получим коэффициент динамичности при внезапной остановке движения:

k д = 1 +

g δ ст

δ ст δ д

5.6. ГОРИЗОНТАЛЬНЫЙ УДАР

Потенциальная энергия, накопленная в системе к моменту возникновения наибольшей деформации δ д , равна кинетической энергии системы

в момент соприкосновения с ней массы m (рис. 5.6):

T = mV 2 = U = R д δ д . 2 2

δд

С учётом уравнений (5.2) и (5.3), а также, принимая условно R ст = mg , получим

V 2 = kд 2 mgδ ст ,

откуда определяем коэффициент динамичности при горизонтальном ударе:

k д =

g δ ст

где δст – перемещение точки системы в месте приложения к ней статической силы mg .

5.7. СКРУЧИВАЮЩИЙ УДАР

Напряжения и деформации при ударном кручении определяются так же, как и при ударном растяжении (сжатии) или ударном изгибе. При ударном кручении применимы формулы для определения коэффициента динамичности (5.5), (5.7).

Например, при ударном скручивании вследствие резкого торможения быстро вращающегося вала, несущего маховик (рис. 5.9), кинетическая энергия T маховика переходит в потенциальную энергию U деформации вала:

Im ω 2

скорость

вращения

маховика;

I m = ∫∫ r 2 dm =

π 2

4 ρ t ∫ r 3 dr ∫ dϕ = ρ t

маховика;

dm = ρ trdrdϕ

– элементарная

m = ρ t

πD 2

маховика;

Q = mg –

вес маховика;

ρ – плотность материала маховика.

Потенциальная энергия деформации вала с учётом уравнений (5.2), (5.3):

U = M кр.дϕ д = k дM крϕ .

Так как угол закручивания при кручении вала круглого профиля равен

ϕ = M кр l ,

GI p

U = kд 2 M кр 2 l .

2 GI p

Приравнивая Т = U , после преобразований, получим формулу для определения коэффициента динамичности при скручивающем ударе :

GI p Im

М кр

GI p Im

ωD 2

Gtρ

ω lD2

GI p Im

Gtρ

GI p

6. УСТАЛОСТЬ

При эксплуатации машин и конструкций напряжения в их многочисленных элементах могут многократно изменяться как по величине, так и по направлению.

Детали, подвергающиеся воздействию переменных напряжений, разрушаются при напряжениях, значительно меньших значений предела прочности, а иногда и предела пропорциональности материала.

Явление разрушения под действием переменных напряжений называется усталостью материала.

Если значения переменных напряжений превышают некоторый предел, то в материале происходит процесс постепенного накопления повреждений, который приводит к образованию субмикроскопических трещин. Трещина становится концентратором напряжений, что способствует её дальнейшему росту. Это ослабляет сечение и в некоторый момент времени вызывает внезапное разрушение детали, которое нередко становится причиной аварий.

Процесс постепенного накопления повреждений под действием переменных напряжений, приводящий к изменению свойств материала, образованию трещин и разрушению детали, называется усталостным раз-

рушением (усталостью).

Испытания образцов на усталость проводятся на специальных установках. Наиболее простой является установка, предназначенная для испытаний на переменный изгиб с вращением при симметричном циклическом изменении напряжений.

6.1. РАСЧЁТ ВАЛА НА УСТАЛОСТНУЮ ПРОЧНОСТЬ

Проверочный расчёт вала на усталостную прочность учитывает все основные факторы, влияющие на усталостную прочность: характер изменения напряжений, абсолютные размеры вала, обработку поверхностей и прочностные характеристики материалов, из которых изготавливаются валы. Таким образом, перед расчётом вала на усталость необходимо полностью уточнить конструкцию вала.

Расчёт на выносливость заключается в определении действительных коэффициентов запаса усталостной прочности для выбранных предположительно опасных сечений и является поэтому уточнённо-проверочным.

Следует помнить, что при ступенчатой форме вала наличие концентраторов напряжений (таких как переход сечения с галтелями, напрессованные детали, шпоночные пазы, шлицы или зубья, отверстия, канавки, резьба и т.д.) опасным необязательно будет то сечение, где суммарный момент имеет наибольшую величину. Поэтому коэффициент запаса уста-

Работа машин во многих случаях связана с ударными нагрузками, которые могут быть обусловлены либо назначением этих машин (например, ковочное оборудование), либо же являются нежелательным следствием условий работы машин или различных конструктивных факторов (например, удары на колеса автомобиля при преодолении препятствий; удары на шатунные болты при выплавке шатунных подшипников).

Ударом называется явление, когда при соприкосновении ударяющего тела и конструкции их относительная скорость изменяется на конечную величину за промежуток времени, пренебрежимо малый по сравнению с периодом свободного колебания конструкции. Обычно это время составляют доли секунды.

Характерной чертой удара является то, что деформация системы, воспринимающей удар, получается не только за счет массы, наносящей удар, но, главным образом, за счет той кинетической энергии, которой эта масса обладает в начале воздействия на систему. При этом возникают большие ускорения и большие инерционные силы, которые в основном и определяют силу удара.

Определение напряжений и деформаций при ударе является одной из наиболее сложных задач сопротивления материалов. Поэтому в инженерной практике применяют так называемый приближенный метод расчета на удар, базирующийся на следующих основных допущениях:

  • 1) в элементе конструкции, воспринимающей удар, возникают напряжения, не превосходящие предела пропорциональности, таким образом, закон Гука сохраняет свою силу при ударе;
  • 2) удар является абсолютно неупругим, т. е. тела после удара не отталкиваются друг от друга;
  • 3) тело, наносящее удар, является абсолютно жестким, а значит, не деформируется;
  • 4) местные деформации в зоне удара и рассеяние энергии при ударе не учитываются.

Рассмотрим основные виды ударов.

Продольный удар. В качестве примера рассмотрим систему с одной степенью свободы, которая представляет собой пружину с коэффициентом жесткости с и падающий на нес груз масс- сой т с высоты Я (рис. 109, а).

Определение силы удара весьма затруднительно, так как неизвестно время соударения, поэтому в инженерной практике обычно пользуются энергетическим методом.

Рис. 109. Динамическая модель ударного нагружения: а ) падение груза с высоты Я; б) удар о пружину; в) возвратное движение груза

Груз т при касании пружины будет обладать кинетической энергией К , которую можно выразить через скорость v K груза в момент касания или высоту Я:

После того как груз коснется пружины, он начнет деформировать пружину. Когда вся кинетическая энергия груза перейдет в потенциальную энергию сжатой пружины, груз остановится (рис. 109, б), пружина получит свою наибольшую динамическую деформацию бд, а сила, сжимающая пружину, достигнет максимума. При составлении энергетического баланса здесь необходимо учитывать изменение потенциальной энергии груза на динамической деформации З л:

Упругая энергия сжатой пружины определяется по формуле

Составим энергетический баланс

или m-g-Hл-mg-S u =--, который можно представить в следующем виде:

В результате рассмотрения статического равновесия упругой системы (рис. 109, в) следует, что отношение силы тяжести груза к жесткости пружины равно статической деформации пружины S CT:

Получили квадратное уравнение, из которого динамическая деформация определится как

Поскольку знак «минус» в этом выражении не соответствует физической стороне рассматриваемой задачи, следует сохранить знак «плюс». Запишем выражение (162) в виде

Величину, стоящую в скобках, называют динамическим коэффициентом:

Динамический коэффициент, выраженный через скорость груза в момент касания пружины, с учетом выражения (10.3) будет равен

Окончательно динамическая деформация пружины определится как

Из формулы (166) следует, что при продольном ударе, чем больше длина стержня и чем меньше его жесткость, тем меньше динамический коэффициент, а следовательно, меньше динамическая сила и динамическое напряжение. Этим можно объяснить, что тросы, соединяющие тягач с буксируемым объектом, не должны быть короткими. Короткий трос при случайном ударе (трогании буксируемого объекта с места или из-за случайных препятствий на дороге) не выдерживает динамической нагрузки и разрывается.

Динамический коэффициент показывает, во сколько раз деформация при ударе больше деформации при статическом приложении нагрузки. В том же отношении изменяются внутренние силы и напряжения:

Из анализа выражений (164) и (165) видно, что динамический коэффициент зависит от кинетической энергии падающего груза. В случае, если груз опускается на упругую систему мгновенно, без начальной скорости (Я = 0), динамическая деформация уже вдвое превышает статическую. Соответственно, в два раза большими оказываются и напряжения.

Динамический коэффициент, а следовательно, и динамические напряжения, также зависят от жестокости упругой системы. При большей жесткости статические деформации имеют меньшие значения, а динамические напряжения при этом увеличиваются. Поэтому снижение напряжений при ударе может быть достигнуто уменьшением жесткости системы.

NB: зависимости для определения динамических напряжений и деформаций, полученные на примере падения груза на пружину, применимы и для других упругих систем: при расчете на удар при растяжении - сжатии, кручении и изгибе.

В каждом случае придерживаются следующего порядка расчета: а) в месте падения груза к упругой системе прикладывают статическую нагрузку, равную весу падающего груза;

  • б) определяют статическую деформацию упругой системы;
  • в) определяют напряжения в материале, возникающие от приложения статической нагрузки;
  • г) определяют коэффициент динамичности;
  • д) определяют динамические напряжения и деформации,
  • е) сравнивают напряжения при ударе с допускаемыми напряжениями:

Обычно коэффициент запаса п принимают равным и т = 2.

В полученных выражениях не учтена масса упругой системы, к которой прикладывается ударная нагрузка. Учет массы даег меньшие значения динамических напряжений, поэтому, рассчитывая конструкции без учета ее массы, мы получаем дополнительный запас прочности.

Поперечный удар. В результате падения груза массой т с высоты Я, балка будет испытывать изгибной или поперечный удар (рис. 110). При поперечном ударе можно пользоваться формулами (164), (165), (166), (167), если в них величину принять за прогиб при статическом нагружении.

Рис. 110.

Скручивающий удар. На рис. 111 приведен вал, на левом конце которого закреплен диск с моментом инерции J m . Вал вращается с угловой скоростью ш. При внезапном торможении правого конца вала вся кинетическая энергия диска перейдет в потенциальную энергию деформации вала: К = U, где

Рис. 111.

Так как наибольшие касательные напряжения в сечении Т

т =-, то с учетом выражения (170) найдем максимальное ди-

намическое напряжение:

где W p - момент сопротивления сечения кручению.

Для определения максимального угла закручивания вала при торможении воспользуемся формулой угла закрутки при кручении, которая с учетом (170) принимает вид

Пример 34. На стальную балку двутаврового поперечного сечения по середине пролета падает груз массой т - 100 кг (рис. 112). Длина балки / = 3м; высота падения h = 10 мм. Для двутавра № 24, а из таблицы сортамента определяем J x = 3800 см 4 ; W x - 317 см 3 ; J y = 260 см 4 ; W y = 41,6 см 3 . Необходимо сопоставить наибольшие статические и динамические напряжения в поперечном сечении балки и прогибы под грузом для случаев изгиба балки в плоскости наибольшей и наименьшей жесткости.


Рис. 112.

Рассмотрим сначала случай изгиба балки в плоскости наибольшей жесткости. Наибольшие нормальные напряжения в поперечном сечении балки при статическом ее нагружении составляют

Динамический коэффициент при поперечном ударе

где S„ - прогиб балки посередине пролета при статическом нагружении:

Определим динамический прогиб и наибольшие динамические напряжения, возникающие в балке при падении груза:

Во втором случае, при изгибе балки в плоскости наименьшей жесткости, аналогично получаем


Тогда динамический прогиб и наибольшие динамические напряжения в балке при ее изгибе в плоскости наименьшей жесткости

При статическом действии нагрузки напряжения во втором случае больше, чем в первом, в 7,63 раза, а при ее ударном действии - лишь в 2,36 раза. Это различие объясняется тем, что во втором случае жесткость балки значительно (в 14,6 раза) меньше, чем в первом, что приводит к существенному уменьшению динамического коэффициента.